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Problems

Algebra
Al. Suppose that a sequenca; a,;: :: of positive real numbers satis es
kak
¥ 2ok 1
for every positive integerk. Prove thata; a; a, ¥ n for everyn ¥ 2.
(Serbia)
A2. Determine all functionsf : Z N Z with the property that
fx fpyg f fxg fpqg 1
holds for allx;y PZ.
(Croatia)
A3. Let n be a xed positive integer. Find the maximum possible value of
T OB T N Xs)
lor se2n
where 1o x;a 1foralli  1;2;::::2n.
(Austria)
A4. Find all functions f : R N R satisfying the equation
fx fpc yo fxyg x fpx yg yfxq
for all real numbersx andy.
(Albania)

A5. Let2zZ 1 denote the set of odd integers. Find all functions: Z N 2Z 1 satisfying

fx fxg y fx fxgy fmx yg fx yq

for every x;y PZ.
(U.S.A)

A6. Let n be a xed integer with n ¥ 2. We say that two polynomialsP and Q with real
coe cients are block-similar if for eachi P t1;2;:::; nuthe sequences
PR015gP®R015 1qg:::;P®R015 2014 and
Q015 Q015 1qg:::;QE015 2014
are permutations of each other.
paq Prove that there exist distinct block-similar polynomials of degrea 1.

pog Prove that there do not exist distinct block-similar polynomials of degge n.
(Canada)
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Combinatorics

Cl. In Lineland there aren ¥ 1 towns, arranged along a road running from left to right.
Each town has aleft bulldozer(put to the left of the town and facing left) and aright bulldozer
(put to the right of the town and facing right). The sizes of the 2 bulldozers are distinct.
Every time when a right and a left bulldozer confront each other, t larger bulldozer pushes
the smaller one o the road. On the other hand, the bulldozers areuite unprotected at their
rears; so, if a bulldozer reaches the rear-end of another oneg thst one pushes the second one
o the road, regardless of their sizes.

Let A and B be two towns, with B being to the right of A. We say that town A can sweep
town B away if the right bulldozer of A can move over toB pushing o all bulldozers it meets.
Similarly, B can sweepA away if the left bulldozer ofB can move toA pushing o all bulldozers
of all towns on its way.

Prove that there is exactly one town which cannot be swept away kgny other one.

(Estonia)
C2. Let V be a nite set of points in the plane. We say thatV is balancedif for any two
distinct points A;B PV, there exists a pointC PV such that AC BC. We say thatV is
center-free if for any distinct points A;B; C PV, there does not exist a pointP PV such that
PA PB PC.

(a) Show that for all n ¥ 3, there exists a balanced set consisting nfpoints.

(b) For which n ¥ 3 does there exist a balanced, center-free set consistinghgboints?

(Netherlands)

C3. Fora nite set A of positive integers, we call a partition ofA into two disjoint nonempty
subsetsA; and A, good if the least common multiple of the elements iMA; is equal to the
greatest common divisor of the elements iA,. Determine the minimum value ofn such that
there exists a set oh positive integers with exactly 2015 good partitions.

(Ukraine)

C4. Let n be a positive integer. Two playersA and B play a game in which they take turns
choosing positive integer& @ n. The rules of the game are:

pq A player cannot choose a number that has been chosen by eitheryg@laon any previous
turn.

pi g A player cannot choose a number consecutive to any of those tHayer has already chosen
on any previous turn.

pii g The game is a draw if all numbers have been chosen; otherwise theyptawho cannot
choose a number anymore loses the game.

The player A takes the rst turn. Determine the outcome of the game, assumgnthat both
players use optimal strategies.
(Finland)
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C5. Consider an in nite sequenceny; a,; : : : of positive integers witha, & 2015 for alli ¥ 1.
Suppose that for any two distinct indices andj we havei a | &.

Prove that there exist two positive integersb and N such that

pg  bg @ 1007

i m 1

whenevernj m ¥ N.
(Australia)

C6. Let S be a nonempty set of positive integers. We say that a positive intege is cleanif
it has a unique representation as a sum of an odd number of distindements fromS. Prove
that there exist in nitely many positive integers that are not clean.

(U.S.A)

C7. In a company of people some pairs are enemies. A group of people iedainsociable
if the number of members in the group is odd and at least 3, and it is pxble to arrange all
its members around a round table so that every two neighbors areemies. Given that there
are at most 2015 unsociable groups, prove that it is possible to piidn the company into 11
parts so that no two enemies are in the same part.

(Russia)
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Geometry

G1l. Let ABC be an acute triangle with orthocenterH. Let G be the point such that the
guadrilateral ABGH is a parallelogram. Letl be the point on the line GH such that AC
bisectsHI . Suppose that the lineAC intersects the circumcircle of the triangleGCI at C
andJ. Prove that1lJ AH.

(Australia)

G2. Let ABC be atriangle inscribed into a circle with center O. A circle with center A
meets the sideBC at points D and E such that D lies betweenB and E. Moreover, letF and
G be the common points of and . We assume thatF lies on the arcAB of not containing
C, and G lies on the arcAC of not containing B. The circumcircles of the trianglesBDF
and CEG meet the sidesAB and AC again atK and L, respectively. Suppose that the lines
FK and GL are distinct and intersect atX . Prove that the points A, X, and O are collinear.
(Greece)

G3. Let ABC be a triangle with=C 9P, and let H be the foot of the altitude fromC.
A point D is chosen inside the triangl€€BH so that CH bisectsAD . Let P be the intersection
point of the linesBD and CH. Let ! be the semicircle with diameterBD that meets the
segmentCB at an interior point. A line through P is tangent to! at Q. Prove that the
linesCQ and AD meet on! .

(Georgia)
G4. Let ABC be an acute triangle, and letM be the midpoint of AC. A circle ! passing
through B and M meets the sidesAB and BC again at P and Q, respectively. LetT be
the point such that the quadrilateral BP TQ is a parallelogram. Suppose thal lies on the
circumcircle of the triangle ABC . Determine all possible values dBT {BM .

(Russia)
G5. Let ABC be a triangle with CA  CB. Let D, F, and G be the midpoints of the
sidesAB, AC, and BC, respectively. A circle passing throughC and tangent to AB at D
meets the segment&F and BG at H and |, respectively. The pointsH*and | tare symmetric
to H and | about F and G, respectively. The lineH4! meetsCD and FG at Q and M,
respectively. The lineCM meets again at P. Prove that CQ QP.

(El Salvador)

G6. Let ABC be an acute triangle withAB | AC, and let be its circumcircle. Let H,
M, and F be the orthocenter of the triangle, the midpoint oBC, and the foot of the altitude
from A, respectively. LetQ and K be the two points on that satisfy = AQH 9 and
=QKH 9. Prove that the circumcircles of the trianglesK QH and KFM are tangent to
each other.

(Ukraine)

G7. Let ABCD be a convex quadrilateral, and lefP, Q, R, and S be points on the sides
AB, BC, CD, and DA, respectively. Let the line segment® R and QS meet at O. Suppose
that each of the quadrilateralsAP OS, BQOP, CROQ, and DSOR has an incircle. Prove that
the linesAC, PQ, and RS are either concurrent or parallel to each other.

(Bulgaria)
G8. A triangulation of a convex polygon is a partitioning of into triangles by diagonals
having no common points other than the vertices of the polygon. W&ay that a triangulation
is a Thaiangulation if all triangles in it have the same area.

Prove that any two di erent Thaiangulations of a convex polygon dier by exactly two
triangles. (In other words, prove that it is possible to replace oneap of triangles in the rst
Thaiangulation with a di erent pair of triangles so as to obtain the seond Thaiangulation.)

(Bulgaria)
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Number Theory

N1. Determine all positive integersM for which the sequenceay; a;; ay;:::, de ned by
Qg % anda, ; atagufork 0;1;2;::: contains at least one integer term.
(Luxembourg)
N2. Let a and b be positive integers such thata!bl is a multiple of a@ bl. Prove that
3a¥ 2b 2.
(United Kingdom)
N3. Let m andn be positive integers such tham j n. Dene x, pm kg{m kqfor k
1,2;:::;n 1. Prove that if all the numbersxy; X,;:::; X, 1 are integers, thenx;x, X, 1 1
is divisible by an odd prime.
(Austria)
N4. Suppose thatag;a;;::: and ky; by;::: are two sequences of positive integers satisfying
ag; ¥ 2 and
ah 1 gcden;bhg 1 bh 1 lempaqbhg 1
for all n ¥ 0. Prove that the sequencedq,) is eventually periodic; in other words, there exist
integersN ¥ 0 andt j O such thata, ; a, foralln¥ N.
(France)
N5. Determine all triples pa; b; @ of positive integers for whichab ¢, bc a, andca bare
powers of 2.
Explanation: A power of2 is an integer of the form2", wheren denotes some nonnegative
integer.
(Serbia)
N6. Let Z, , denote the set of positive integers. Consider a functioh: Z, o N Z, 5. For
any m;n PZ; o we write f"omq  fgd HnolbBRa: - :ad Suppose thatf has the following two

n
properties:

n
pg lIf m;n PZ, o, then fpn% PZ, o

piq The setZ, o ztf ;ng|n PZ,; quis nite.

Prove that the sequencd plg 1;fp2q 2;f@q 3;:::is periodic.

(Singapore)
N7. Let Z; o denote the set of positive integers. For any positive integds, a function
f:Z oN Z, ois calledk-goodif gcd fpmg n;fpng m = kforallm n. Find all k such

that there exists ak-good function.

N (Canada)

N8. For every positive integern with prime factorization n :‘ 1P, dene

fmg ¥

i:pij 1000

That is, f pngis the number of prime factors oh greater than 13°, counted with multiplicity.
Find all strictly increasing functionsf : Z N Z such that

f fppg fpg e fpa Do for all integersa andbwith aj b.

(Brazil)
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Solutions

Algebra

Al. Suppose that a sequenca; a,;::: of positive real numbers satis es

kak

& 1¥ 5 1)
T a2 pk 1g
for every positive integerk. Prove thata; a a, ¥ nforeveryn ¥ 2.
(Serbia)
Solution. From the constraint (1), it can be seen that
2
k L & P k 19 a k 1;
A 1 e =
and so ‘ K 1
y =
A 1 e
Summing up the above inequality fok 1;:::;m, we obtain
1 0 2 1 m m 1 m
a o — — — — . (2)
Q@ a az @ am 1 am am 1

Now we prove the problem statement by induction om. The casen 2 can be done by
applying (1) to k  1:

1
ay aw¥a —¥2
a

For the induction step, assume that the statement is true for soen ¥ 2. If a, ; ¥ 1, then
the induction hypothesis yields

& a ay1¥n L (3)
Otherwise, ifa, 1 1 then apply (2) as

W, 2t L a4 ipn 1 2
an 1 1anl an 1 vt .

a an a, 1 ¥
That completes the solution.

Comment 1. It can be seen easily that having equality in the statement rguiresa; a, 1inthe
base casen 2,anda, 1 1in (3). So the equality a; an, nhis possible only in the trivial
casea; a, 1.

Comment 2.  After obtaining (2), there are many ways to complete the soluion. We outline three
such possibilities.

With dening s, a an, the induction step can be replaced by

n
Sn 1 Sn an ]_¥Sn S_¥n 1,
n

: o n.
because the functionx PNx ” increases orrn; 8q.
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By applying the AM{GM inequality to the numbers a; ax and kax 1, we can conclude
a1 axy kag 1¥ 2k
and sumitup fork 1;:::;n 1.

We can derive the symmetric estimate

n n

a; g pay 8 1| ¥ g 1qg
lai jan i 2 i 2

npn 1q
2

and combine it with the AM{QM inequality.
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A2. Determine all functionsf : Z N Z with the property that

fx fpg f fxag fpg 1 )

holds for allx;y PZ.
(Croatia)

Answer. There are two such functions, namely the constant function PN 1 and the successor
function x PNx 1.

Solution 1. It is immediately checked that both functions mentioned in the answeare as
desired.

Now let f denote any function satisfying (1) for allx;y P Z. Substituting x 0 and
y fpginto (1) we learn that the numberz f fp0q satisesf mq 1. So by plugging
y zinto (1) we deduce that

fpx 19 f fixqg (2)
holds for allx PZ. Thereby (1) simpli es to

fx fpyg fx 19 fpq 1: 3)

We now work towards showing thaf is linear by contemplating the di erencef px  1q f pxq
for any x PZ. By applying (3) with y x and (2) in this order, we obtain

fxk 1g fxg fx fxg 1 ffx 1 fmxqg 1:

Since (3) showd x 1 fmxq fmxq fmxqg 1 1, this simpli es to

fx 19 fmxg A;

whereA fp 1g 1 is some absolute constant.

Now a standard induction in both directions reveals thaf is indeed linear and that in fact
we havef xq Ax B forall x PZ, whereB f g Substituting this into (2) we obtain
that

Ax pA Bg A% pAB Bq

holds for allx P Z; applying thistox Oandx 1weinferA B AB B andA? A.
The second equation leadst&é O orA 1. IncaseA 1, the rst equation givesB 1,
meaning thatf has to be the successor function. ik 0, thenf is constant and (1) shows
that its constant value has to be 1. Thereby the solution is complete.

Comment. After (2) and (3) have been obtained, there are several otheways to combine them so as
to obtain linearity properties of f. For instance, using (2) thrice in a row and then (3) with x  f pyq
one may deduce that

foy 29 f fpy 1g f f fpyq ffpyg 1 fpyg fpog 1

holds for all y P Z. It follows that f behaves linearly on the even numbers and on the odd numbers
separately, and moreover that the slopes of these two lineafunctions coincide. From this point, one
may complete the solution with some straightforward case aalysis.

A di erent approach using the equations (2) and (3) will be presented in Solution 2. To show
that it is also possible to start in a completely di erent way, we will also present a third solution that
avoids these equations entirely.
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Solution 2. We commence by deriving (2) and (3) as in the rst solution. Now praded that f

is injective, (2) tells us thatf is the successor function. Thus we may assume from now on that
f is not injective, i.e., that there are two integersaj bwith fpag fpg A straightforward
induction using (2) in the induction step reveals that we havdpa ng fp nqfor all
nonnegative integersn. Consequently, the sequence, fp ngis periodic and thus in
particular bounded, which means that the numbers

min , and max
n¥0 n¥0
exist.
Let us pick any integery with f pyq
Due to the de nition of * and (3) we have

and then an integerx ¥ awith f x fpyq

"ofmx 1g fx fpq fpyg 1 22 1,

whence' ¥ 1. The same reasoning applied to yields = 1. Since' @ holds trivially,

it follows that ' 1, or in other words that we havef ptq 1 for all integerst ¥ a.
Finally, if any integer y is given, we may nd an integerx which is so large thatx 1¥ a

andx fpyq¥ ahold. Due to (3) and the result from the previous paragraph we get

foyq fxk 1g fx fyg 1 p 1gp 19 1 1:
Thereby the problem is solved.

Solution 3. Setd f g By pluggingx f pyginto (1) we obtain

f°yaq fpg d 1 4)

for all y P Z, where the left-hand side abbreviate$ f g pyqq. When we replacex in (1) by
f xqwe obtainf fpxq fpyg f3xg fp/g 1andas aconsequence of (4) this simpli es to

f fxqg fyg fxg fpyg d: (5)

Now we consider the set
E t fmxq d|xPZu:

Given two integersa and b from E, we may pick some integers andy with fpxg a d
andfp/q b d;now (5)tellsusthatfpa bg pa by d, which means thata bitself
exempliesa bPE. Thus,

E is closed under taking di erences (6)

Also, the de nitions of d and E yield OPE. If E t Ou, then f is a constant function
and (1) implies that the only value attained byf is indeed 1.

So let us henceforth suppose thd contains some number besides zero. It is known that in
this case (6) entailsE to be the set of all integer multiples of some positive integde. Indeed,
this holds for (
k min [x| xPE andx O ;

as one may verify by an argument based on division with remainder.
Thus we have
tfxqxPZu tk t d|tPZu: (7

Due to (5) and (7) we get
fpk tg k t d
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for all t P Z, whence in particularf kg k d. So by comparing the results of substituting
y Oandy kinto (1) we learn that

fre kg fmeq kK (8)

holds for all integersz. In plain English, this means that on any residue class modulo the
function f is linear with slope 1.

Now by (7) the set of all values attained byf is such a residue class. Hence, there exists an
absolute constantc such thatf fpxq fxq cholds for allx PZ. Thereby (1) simpli es to

f x fpyg fmxq fpg c 1 (9)

On the other hand, considering (1) modulk we obtain d 1 pmod kq because of (7). So
by (7) again, f attains the value 1.

Thus we may apply (9) to some integey with f pyq 1, which givesf x 19 fmxqg c.
Sof is a linear function with slopec. Hence, (8) leads tac 1, wherefore there is an absolute
constantdwith f xqg x dforall x PZ. Using this forx 0 we obtaind® dand nally (4)
disclosesd 1, meaning thatf is indeed the successor function.
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A3. Let n be a xed positive integer. Find the maximum possible value of

B T NOKXs;

where 1o x;o 1foralli 1;2;:::;2n.
(Austria)

Answer. nm 1qg

Solution 1. Let Z be the expression to be maximized. Since this expression is linear inrgve
variablex; and 1la x; & 1, the maximum ofZ will be achieved wher; 1 or 1. Therefore,

it su ces to consider only the case wherx; Pt 1;luforalli 1;2;:::;2n.
Fori 1;2;:::;2n, we introduce auxiliary variables
i 2n
Vi X X!
r 1 roi 1

Taking squares of both sides, we have

y? X2 2X, Xs 2X, Xs 2X, Xs

r 1 r sai ir s raj s

2n T 2%, Xs T Xs . K Xs: (1)
rosoi ir s rei s
where the last equality follows from the fact thatx; Pt 1;1u. Notice that for everyr s, the
coe cient of x;xsin(1)is2foreachi 1;:::;r 1;s;:::;2n, and this coe cientis 2 for each
i nr::;;s 1. This implies that the coe cient of X, Xs in iznlyi2 is22n s rq 2p rq
4m s rqg Therefore, summing (1) forn  1;2;:::;2n yields
2n
y?  4n? 4m s roxXs 4n?  4z: (2)
i1 lor sa2n

Hence, it su ces to nd the minimum of the left-hand side.

Sincex, Pt 1;1u, we see thaty; is an even integer. In additiony; Vi 12X 2,
and soy; ; andy; are consecutive even integers for eveity 2;3;:::;2n. It follows that
y? ;Y2 ¥ 4, which implies

Yi ygj 1 ygj ¥ 4n: )

Combining (2) and (3), we get
2n
4no’ y2 4n? 4z (4)
i1
Hence,Z @ n;m 1qg
If we setx; 1 for odd indicesi and x; 1 for even indiced, then we obtain equality
in (3) (and thus in (4)). Therefore, the maximum possible value o isnpn  1qg as desired.

Comment 1. Z nm 1gcan be achieved by several other examples. In particulart; needs not
be 1. For instance, settingx; p 1d forall 2o i @ 2n, we nd that the coe cient of x4 in Z is 0.
Therefore, Xx; can be chosen arbitrarily in the interval r 1;1s

Nevertheless, ifx; P t 1;1u for all i 1;2;:::;2n, then the equality Z nm  1q holds only
when py1;y2;:::;¥2nq PO, 2,0; 2;:::;0; 29or p 2,0, 2,0;:::; 2,00 In each case, we can
reconstruct x; accordingly. The sum 2", x; in the optimal cases needs not be 0, but it must equal 0

or 2.
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Comment 2.  Several variations in setting up the auxiliary variables are possible. For instance, one
may let Xon Xij and yil Xi X 1 Xi n 1 forany 1o i = 2n. Similarly to Solution 1,
we obtain Y : yZ y? y2 2n? 2Z. Then, it su ces to show that Y ¥ 2n. If n is odd,
then eachylis odd, and soy? ¥ 1. If n is even, then eachy! is even. We can check that at least one
ofyL yt ,,y} ., andy} ; ;is nonzero, so thaty? yZ, yZ. y2. ¥ 4; summing these up for
i 1;3:::;n  lyieldsY ¥ 2n.

Solution 2. We present a di erent method of obtaining the boundZ & nm;m  1g As in
the previous solution, we reduce the problem to the case Pt 1;1u. For brevity, we use the
notation r2ns t 1;2;:::;2nu.

A tiPns:x;, 1u and B t iPr2ns: x; 1u:

For any subsetsX and Y of r2nswe de ne

epxX;Y q ’ ps r nqg:

r s;rPX;sPY

One may observe that

s 1 n 1
epA;Aq epA;Bq eB;Aq eB;Bq  epns ransq s r ng M loeen 1q

lar so2n

Therefore, we have

m_lgw@n 14,
! .

Thus, we need to maximizeepA; Aq eB; B g whereA and B form a partition of r2ns

Z epA’Aq epAjBg eBiAg eBiBg 2 epAAq epBiBq 5)

Due to the symmetry, we may assume thafA| n pand|B| n p, where Oa pa n.
From now on, we x the value ofp and nd an upper bound forZ in terms of n and p.

Letay ap an pandby by b,  list all elements ofA and B, respectively.
Then
, L n p
epA; Aq | & ng @1 n pe 2 n (6)
loj jen p i1

and similarly
nop

s ) n
eB;Bq @ 1 n pdg 2 P n: (7)
i1
Thus, now it su ces to maximize the value of
n p n p
M @R 1 n pw @R 1 n pdh: (8)
i1 i1

n p Ln p 3::51 n p;
and those offy form the sequence

n p Ln p 3::51 n p:
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Altogether, these coe cients are, in descending order:
n p 1 2,fori 1,2,:::;p
n p 1 2, counted twice, fori 1;2;:::;n p; and
pn p 1 2gfori p;p 1;:::;1.

Thus, the rearrangement inequality yields

P
Ma m p 1 2g@n 1 iq
i1
f:p
m p 1 2ig@n 2 p 2ig p2n 1 p 2qg
i1
>p
m p 1 Z2q: 9)

i1

Finally, combining the information from (5), (6), (7), and (9), we oliain

m  lg@n  Iq n p n p
ze 3 any 2
P nop
2 m p 1 2g@2n 1 2ig 2 @ p 1 2ggn 2p 3 diq;
i1 i1

which can be simplied to

2
Zonm 1q Zpp lgp 1o

Sincep is a nonnegative integer, this yieldZ @ npn 1qg
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A4. Find all functions f : R N R satisfying the equation

fx fx yqg fmyg x fpc yg yfmxqg 1)
for all real numbersx andy.
(Albania)
Answer. There are two such functions, namely the identity function anck PN2  x.

Solution. Clearly, each of the functionsx PRx and x PN2  x satis es (1). It su ces now to
show that they are the only solutions to the problem.

Suppose thatf is any function satisfying (1). Then settingy 1 in (1), we obtain

fx fx 1g x fx 1g (2)
in other words,x fpx 1gis a xed point of f for everyx PR.
We distinguish two cases regarding the value &f0g

Case 1. fp0g O.
By letting x 0 in (1), we have

f foya fog foyg yfrog
So, ifyg is a xed point of f, then substituting y vy in the above equation we get, 1.
Thus, it follows from (2) that x fpx 1g 1forallx PR. Thatis, fpxq 2 xforall x PR.

Case 2. f0qg O.
By letting y 0 and replacingx by x 1 in (1), we obtain

fx fpxk 1g 1 x fx 1g L 3)
From (1), the substitution x 1 yields
f1 fpy 19 fpg 1 fp 19 yfplg (4)

By plugging x 1 into (2), we see thatf p 1q 1. We then plugy 1 into (4) and
deduce thatf plg 1. Hence, (4) reduces to

f1 fpy 19 fpwyg 1 fpy 19 v: (5)

Accordingly, if both yo andy, 1 are xed points of f, then so isy, 2. Thus, it follows
from (2) and (3)that x fpx 19 2is a xed point of f for everyx PR; i.e.,

fx fx 1g 2 x fx 1g 2
Replacingx by x 2 simpli es the above equation to
fx fx 1g x fx I1g

On the other hand, we sety 1in (1) and get

fx fx 1g x fpx 1g fmxg fp xqg
Therefore,f p xq f pxgfor all x PR.

Finally, we substitute p;ygby p 1, yqin (1) and use the fact thatf p 1q 1 to get

f 1 fpy 19 fpg 1 fpy 1q y:

Sincef is an odd function, the above equation becomes
f1 fpy 19 fpq 1 fpy 19 v:

By adding this equation to (5), we conclude thaf pyg vy forally PR.
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A5. Let2zZ 1 denote the set of odd integers. Find all functions: Z N 2Z 1 satisfying

fx fxgy fx fxg y fx yg fpx yg (1)

for every x;y PZ.
(U.S.A)
Answer. Fix an odd positive integerd, an integerk, and odd integers'o; "1;:::; ¢ 1. Then

the function de ned as
fpmd iq 2kmd “id pmPZ; i 0;1;:::;d 19
satis es the problem requirements, and these are all such funatie

Solution. Throughout the solution, all functions are assumed to map integgito integers.
For any function g and any nonzero integet, de ne

tgXq gX tq 9gmXq

For any nonzero integersa and b, notice that , g b ad. Moreover, if ,g 0 and
g O,then ,,g Oand ,g O for all nonzero integerd. We say that g is t-quasi-
periodic if (g is a constant function (in other words, if ; (g 0, or g ist-periodic). In
this case, we call a quasi-periodof g. We say that g is quasi-periodicif it is t-quasi-periodic
for some nonzero integet.
Notice that a quasi-period ofg is a period of ;9. So ifgis quasi-periodic, then its minimal
positive quasi-periodt divides all its quasi-periods.

We now assume thaf satis es (1). First, by settinga x vy, the problem condition can
be rewritten as
t xqf A txgf 22X a fxq for all x;aPZ. (2)

Let b be an arbitrary integer and letk be an arbitrary positive integer. Applying (2) when
a is substituted by b;b fpxg:::;b p k 1o pxgand summing up all these equations, we get

Notice that a similar argument works wherk is negative, so that

v T g mf@x b Mq  for any nonzero integeM such thatf pxqg |[M.  (3)

We now prove two lemmas.
Lemma 1. For any distinct integersx andy, the function cmpg gt pyad 1S 20y Xgrperiodic.
Proof. DenoteL Icm f xqg f pyq . Applying (3) twice, we obtain

Lfpg fpx b Lg  f 2y pb 2y xqq L Lf b 2y Xxq:
Thus, the function [ f is 2y xgperiodic, as required. I

Lemma 2. Let g be a function. Ift and s are nonzero integers such that xg 0 and
+ tg O,then g O.

Proof. Assume, without loss of generality, thats is positive. Let a be an arbitrary integer.
Since ; (g 0, we have

t9Paq g tq iga ps Ig:

The sum of theses equal numbers is gpag 0, so each of them is zero, as required. |
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We now return to the solution.

Step 1. We prove thatf is quasi-periodic.

Let Q lcm f POgfplg. Applying Lemma 1, we get that the functiong of is
2-periodic. In other words, the values off are constant on even numbers and on odd numbers
separately. Moreover, settingd Q andx b 0in (3), we getg®0q gp Qg Since 0 and

Q have di erent parities, the value ofg at even numbers is the same as that at odd numbers.
Thus, g is constant, which means thatQ is a quasi-period off .

Step 2. Denote the minimal positive quasi-period of by T. We prove thatT | f pxq for all
integersx.

Since an odd numbeR is a quasi-period of , the numberT is also odd. Now suppose, to
the contrary, that there exist an odd primep, a positive integer , and an integeru such that
p |Tbutp -fpug Settingx wuandy Oin(l),wehave?2pqg f u fpug f u fpq,
sop does not divide the value of at one of the pointsu f pugoru f pug Denote this point
by v.

Let L lem fpugfpvg. Sincelu v| fpug from Lemma 1 we get spq Lf 0.
Hence the function f is 2f pugperiodic as well asT -periodic, so it is gcdT; 2f puqg -periodic,
O gedpr:2fpugq Lf 0. Similarly, observe that the function gcqpr.of ugd 1S L-periodic as
well as T-periodic, so we may conclude that geqsriLq gedpr:2f pugd 0. Sincep - L, both
gcd T;2f pug and gcdT; Lgdivide T{p. We thus obtain 1 t4f 0, which yields

Tp Tp 2f O

Since 1 f 0, we can apply Lemma 2 to the function ;f, obtaining +; f 0.
However, this means thatf is pTr{pgquasi-periodic, contradicting the minimality of T. Our
claim is proved.

Step 3. We describe all functiond .

Let d be the greatest common divisor of all values déf. Then d is odd. By Step 2,d is a
quasi-period off , so that 4f is constant. Since the value of 4f is even and divisible byd,
we may denote this constant by @k, wherek is an integer. Next, for alli  0;1;:::;d 1,
dene *; fpg{d; notice that *; is odd. Then

fpnd iq mafpq fpg 2kmd “id foralmPZ andi 0;1;:::;d 1.

This shows that all functions satisfying (1) are listed in the answer.
It remains to check that all such functions indeed satisfy (1). Thiss equivalent to check-
ing (2), which is true because for every integex, the value off pxqis divisible by d, so that
txgf IS constant.

Comment. After obtaining Lemmas 1 and 2, it is possible to complete thesteps in a di erent order.
Here we sketch an alternative approach.

For any function g and any nonzero integert, we say that g is t-pseudo-periodicif { (g 0. In
this case, we callt a pseudo-periodof g, and we say that g is pseudo-periodic
Let us rst prove a basic property: if a function g is pseudo-periodic, then its minimal positive
pseudo-period divides all its pseudo-periods. To establis this, it su ces to show that if t and s
are pseudo-periods ofg with t s, then so ist s. Indeed, suppose that ; g s s O.
Then ¢ sO s s O0,sothat { g 0 by Lemma 2. Taking dierences, we obtain
t t sO s tsg Oandthus s ¢ sg O.

Now let f satisfy the problem condition. We will show that f is pseudo-periodic. When this is
done, we will let T! be the minimal pseudo-period off , and show that T* divides 2f pxq for every
integer x, using arguments similar to Step 2 of the solution. Then we wi come back to Step 1 by
showing that T1is also a quasi-period off .
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First, Lemma 1 yields that 55 xq 1cmp af yad O for every distinct integers x and y. Hence
f is pseudo-periodic with pseudo-period_x,, lcm 2y xgf xqgf pyq .

We now show that T1| 2f pxq for every integer x. Suppose, to the contrary, that there exists an
integer u, a prime p, and a positive integer suchthatp | Ttandp -2f pug Choosev as in Step 2 and
employ Lemma 1 to obtain g 1cmg pugf igd 0. HOwever, this implies that 1y, tyf 0, a
contradiction with the minimality of T2

We now claim that t: »f 0. Indeed, Lemma 1 implies that there exists an integes such that

s of 0. Hence tig »f 71 11 of 0, which allows us to conclude that 11 »f 0 by
Lemma 2. (The last two paragraphs are similar to Step 2 of the slution.)

Now, it is not di cult to nish the solution, though more work is needed to eliminate the factors
of 2 from the subscripts of 11 of 0. Once this is done, we will obtain an odd quasi-period of
that divides f pxqfor all integers x. Then we can complete the solution as in Step 3.
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AG. Let n be a xed integer with n ¥ 2. We say that two polynomialsP and Q with real
coe cients are block-similar if for eachi P t1;2;:::;nuthe sequences

PpR015g P@R015 1g:::;P@R015 2014 and
Qp2015g Q015 1qg:::; Q015 2014
are permutations of each other.

paq Prove that there exist distinct block-similar polynomials of degrea 1.

pbg Prove that there do not exist distinct block-similar polynomials of degge n.

(Canada)
Solution 1. For convenience, we sdt 2015 2° 1.
Part ( a). Consider the following polynomials of degree 1:
in in
Pxq x ikg and Qmq x ik 1q
i 0 i 0
SinceQmxq Pmx 1lgand PPOg Ppkg Ppkq Ppmkq these polynomials are

block-similar (and distinct).

Part ( b). For every polynomial Fpxq and every nonnegative integem, de ne gpmq
M Fpg in particular, gpg 0. It is well-known that for every nonnegative integed the

sum [, i%is a polynomial inm of degreed 1. Thus ¢ may also be regarded as a real

polynolmial of degree de§ 1 (with the exception thatif F 0, then ¢ 0 as well). This
allows us to consider the values of ¢ at all real points (where the initial de nition does not
apply).

Assume for the sake of contradiction that there exist two distincblock-similar polynomials
Pmxgand Qpxq of degreen. Then both polynomials p gpxgand p: g2pxghave roots at the

1n

Txqg @ ikg

i 0

roots of the polynomial rpxgq Then degF ¥ n, and there exists a polynomialGpxqg such that
degG degF nandFmxq TGXg T 1lGx 1g
Proof. If degF n, then gpxqghas at leastn 1 roots, while its degree is less than 1.
Therefore, gpxgq 0 and henceFpxg 0, which is impossible. Thus def ¥ n.

The lemma condition yields that rpxq TpxgGpxq for some polynomialGpxq such that
degG deg ¢ pn 1g degF n.

Now, letus deneFypxq TmxoGpxq T 196G 1g Then for every positive integem
we have

nMg TxeGmg Tk 16X 19 TmaGmg TpogGpg  TmeGmg Mg

i1

so the polynomial ¢ ,Xq FIXg  f,Xghas in nitely many roots. This means that this
polynomial is zero, which in turn yieldsFpxq Fypxqg as required. I
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First, we apply the lemma to the nonzero polynomiaR;pxq Ppxq Qpxg Since the degree
of Rypxqis at mostn, we conclude that it is exactlyn. Moreover, R;pxq Txqg T 1q
for some nonzero constant .

Our next aim is to prove that the polynomialSpxqg Ppxq Qmpxqis constant. Assume the
contrary. Then, notice that the polynomialR,pxq P QX  RimoSpxqis also nonzero
and satis es the lemma condition. Sincen degR; degS degR; = 2n, the lemma yields

Raxq TxeGmg Tk 1Gm  1q

with some polynomialGpxqwith 0 degG = n.
Since the polynomialR;pxq Tpxq T 1q divides the polynomial

Raxq TmqGmxgq G 1g G 1gTmg Tpx 1q;

we getR;xq | Txq Gxqg Gpx  1q . On the other hand,

ged TkGRymxg  ged TxgTxq Tk 19 ged Txg Tk 1g 1

since bothTpxgand Tpx  1qare the products of linear polynomials, and their roots are distinct.
Thus R;pxq |Gxq G  1g However, this is impossible sinc&pxg Gpx  1gis a nonzero
polynomial of degree less than degR;.

Thus, our assumption is wrong, andSpxqis a constant polynomial, saySpxq . Notice
that the polynomials 2P pxq { and 2Qpxq g{ are also block-similar and distinct.
So we may replace the initial polynomials by these ones, thus obtainiriggo block-similar
polynomials P pxg and Qpxq with Pxq Qmg Tmxg Tpx 1g It remains to show that
this is impossible.

Foreveryi 1;2:::;n, the valuesTpk k 1gand Tpk 1ghave the same sign. This
means that the valuesPpk k 1q Tpk k 1gandPpkq Tpk 1qhave opposite
signs, soP xqghas a root in each of then segmentsrik  k 1;iks Since ded® n, it must
have exactly one root in each of them.

Thus, the sequenceP plg P2qg :::; Ppkq should change sign exactly once. On the other
hand, sincePpxgand P pxgare block-similar, this sequence must have as many positive terms
as negative ones. Sinck 2° 1 is odd, this shows that the middle term of the sequence
above must be zero, s®p 1g O0,orTp 1g Tpg However, this is not true since

1n 1n
Tp dal |~ 2 [ I 1 ikl [ 1 | ikl |Tpal

i 2 i 2

where the strict inequality holds becausa ¥ 2. We come to the nal contradiction.

Comment 1. In the solution above, we used the fact thatk i 1 is odd. One can modify the
arguments of the last part in order to work for every (not necessarily odd) su ciently large value of k;
namely, whenk is even, one may show that the sequencBplg P2q :::; Pkqhas di erent numbers
of positive and negative terms.

On the other hand, the problem statement with k replaced by 2 is false, since the polynomials
Pxg Tmqg Tpx 1gandQmq Tpx 1q Tpxgare block-similar in this case, due to the fact that
PR 1qg PRiqg OQpiq Qi 1g T 1qforalli 1;2;:::;n. Thus, every complete
solution should use the relationk j 2.

One may easily see that the conditionn ¥ 2 is also substantial, since the polynomialsx and
k 1 x become block-similar if we setn 1.

It is easily seen from the solution that the result still holds if we assume that the polynomials have
degreeat most n.
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Solution 2. We provide an alternative argument for partpgog

Assume again that there exist two distinct block-similar polynomiald? pxq and Qpxq of
degreen. Let Rxqg Ppxg Qmxgand Spxq Pmxq Qpxg For brevity, we @Iso denote the
segment g 1k 1;ik by l;,andtheset p 1k 1, 1k 2;:::;ik of all integer
points in |; by Z;.

Step 1. We prove thatRpxg has exactly one root in each segmeht, i  1;2;:::;n, and all
these roots are simple.
Indeed, take anyi P t1;2;:::;nuand choose some points ;p PZ; so that

P g minPpxq and  Ppp g maxPpq

Since the sequences of values Bf and Q in Z; are permutations of each other, we have
R g Ppqg QmagreO0andRmp g Pp g Qpm q¥ 0. SinceRpxgis continuous, there
exists at least one root oRpxqgbetweenp andp |thusin I;.

So, Rxq has at least one root in each of the disjoint segmentsl; with i 1;2;:::;n.
SinceRpxqis nonzero and its degree does not exceedit should have exactly one root in each
of these segments, and all these roots are simple, as required.

Step 2. We prove thatSpxqis constant.

We start with the following claim.

Claim. For everyi 1;2;:::;n, the sequence of valueS p 1k 1,Sp 1k 2,...,
Spk g cannot be strictly increasing.

Proof. Fix any i P t1;2;:::;nu. Due to the symmetry, we may assume thaP ikq & Qpkg
Choose nowp andp asin Step 1. If we hadPmp g Ppp g then P would be constant
on Z;, so all the elements oZ; would be the roots ofRpxg which is not the case. In particular,
we havep p.Ifp jp,thenSp g Ppqg QmageQm g Pmp g Smp g soour
claim holds.

We now show that the remaining cas@ p is impossible. Assume rst thatPmp q j
Qm g Then, like in Step 1, we haveRpp g2 0, R g i 0, andRpkq = 0, soRpqhas a root
in each of the intervalsrp ;p gand p ;iks This contradicts the result of Step 1.

We are left only with the casep p andPp g Qpp gq(thus p is the unique root of
Rpxqin I;). If p ik, then the values ofRpxgon Z; z tiku are all of the same sign, which
is absurd since their sum is zero. Finally, ip p ik, then Rpgp g and Rpkq are both
negative. This means thatRpxqgshould have an even number of roots irp ;iks counted with
multiplicity. This also contradicts the result of Step 1. I

In a similar way, one may prove that for every  1;2;:::;n, the sequenc& g 1k 1,
Sp 1lk 2, ..., Spgkqgcannot be strictly decreasing. This means that the polynomial
Smq Smxq Spx 1gattains at least one nonnegativ? value, as well as at least one non-
positive value, on the seZ; (and even onZ;z g 1k 1);so S hasarootinl;.
Thus S has at leastn roots; however, its degree is less than so S should be identically
zero. This shows thatSpxqis a constant, saySpxq

Step 3. Notice that the polynomialsPpxq {2 and Qg {2 are also block-similar and
distinct. So we may replace the initial polynomials by these ones, thusachingP pxq Qg

Then Rpxq 2P xq soPpxghas exactly one root in each of the segmenits i 1;2;:::;n.
On the other hand,Ppxgand P pxgshould attain the same number of positive values of;.
Sincek is odd, this means thatZ; contains exactly one root oP pxg moreover, this root should
be at the center ofZ;, becauseP pxghas the same number of positive and negative values 8n

Thus we have found alln roots of P pxg so

1n

Pxg ¢ P ik g for somec PR z t0Ou,

i1
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where™ p k 1gf2. It remains to notice that for everyt PZ; z t1u we have

in 1n

|Paal | [t - 3t ik | | " |1 ik | | Pplg}

i 2 i 2

soPplq Ppqgfor all t PZ;. This shows thatP pxqis not block-similar to Ppxg The nal
contradiction.

Comment 2. One may merge Steps 1 and 2 in the following manner. As above, envset Rpxq
Pmxg Qmgand Sxq Ppxq Qg

We aim to prove that the polynomial Spxq 2Ppxg Rpxq 20Qmq Rpxgis constant. Since the
degrees ofRpxqand Spxq do not exceedn, it su ces to show that the total number of roots of Rpxq
and Spxq Smxq Spx  1gis at least 2n. For this purpose, we prove the following claim.

Claim. For everyi 1;2;:::;n, either each ofR and S has arootinlj, or R has at least two roots
in li.

Proof. Fix any i P t1;2;:::;nu. Let r P Z; be a point such that |Rprgql maxxpz; |RXq we may
assume thatRprg j 0. Next, let p ;q P I; be some points such thatPp g minypz, Ppxq and
Qp q maxkpz; Qg Notice that Pp qe Qprg Ppgand Qpg q¥ Pprgi Qprg sor is dierent
fromp andq .

Without loss of generality, we may assume thatp r. Thenwe haveRmp q Pp g Qpm g=
0 Rpg soRpxghasarootinrp ;rq If g i r, then, similarly, Rpg qe@ 0 Rprg and Rpxgalso
has a root inpr;q s soRpxghas two roots in |, as required.

In the remaining case we havey r; it su ces now to show that in this case S hasarootinl;.
SincePmp qr Qpqgand [Rp gl = Rprg we haveSmp q 2P q Rp qe2Qprgq Rpq Spg
Similarly, we get Spg 9 20pg 9 Rpg q¥2Pprqg Rprg Sprg Therefore, the sequence of values
of S on Z; is neither strictly increasing nor strictly decreasing, which shows that S has a root
inlj. [

Comment 3.  After nding the relation Ppxq Qg Tmxqg T 1g from Solution 1, one
may also follow the approach presented in Solution 2. Knowldge of the di erence of polynomials
may simplify some steps; e.g., it is clear now thatPpxqg Qmxqhas exactly one root in each of the
segmentsl;.
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Combinatorics

Cl. In Lineland there aren ¥ 1 towns, arranged along a road running from left to right.
Each town has aeft bulldozer(put to the left of the town and facing left) and aright bulldozer
(put to the right of the town and facing right). The sizes of the 2 bulldozers are distinct.
Every time when a right and a left bulldozer confront each other, th larger bulldozer pushes
the smaller one o the road. On the other hand, the bulldozers areuite unprotected at their
rears; so, if a bulldozer reaches the rear-end of another oneg thst one pushes the second one
o the road, regardless of their sizes.

Let A and B be two towns, with B being to the right of A. We say that town A can sweep
town B away if the right bulldozer of A can move over toB pushing o all bulldozers it meets.
Similarly, B can sweepA away if the left bulldozer ofB can move toA pushing o all bulldozers
of all towns on its way.

Prove that there is exactly one town which cannot be swept away kgny other one.

(Estonia)

Solution 1. Let Tq;Ty;:::; T, be the towns enumerated from left to right. Observe rst that,
if town T; can sweep away tow;, then T; also can sweep away every town located betwe&n
andT;.

We prove the problem statement by strong induction om. The base cas& 1 is trivial.

For the induction step, we rst observe that the left bulldozer inT; and the right bulldozer
in T, are completely useless, so we may forget them forever. Among titeer 2n 2 bulldozers,
we choose the largest one. Without loss of generality, it is the rightubdozer of some townTy
with kK n.

Surely, with this large bulldozerT, can sweep away all the towns to the right of it. Moreover,
none of these towns can swee€fx away; so they also cannot sweep away any town to the left

change its status of being (un)sweepable away by the others.
Applying the induction hypothesis to the remaining towns, we nd a uigue town among

town in the initial situation. Thus the induction step is established.

Solution 2. We start with the same enumeration and the same observation as iol8tion 1.
We also denote by’; and r; the sizes of the left and the right bulldozers belonging td;,
respectively. One may easily see that no two towng and T; with i j can sweep each other
away, for this would yieldr; j 7 i ri.

Clearly, there is no town which can sweep, away from the right. Then we may choose the
leftmost town Ty which cannot be swept away from the right. One can observe nowathno
town T; with i j k may sweep away some towil; with j K, for otherwiseT; would be able
to sweepTy away as well.

Now we prove two claims, showing together thaly is the unique town which cannot be
swept away, and thus establishing the problem statement.

Claim 1. Ty also cannot be swept away from the left.

Proof. Let T, be some town to the left ofTx. By the choice of Ty, town T,, can be swept
away from the right by some townT, with pj m. As we have already observed) cannot be
greater thank. On the other hand, T, cannot sweepl, away, soa fortiori it cannot sweepTy

away. I

Claim 2. Any town T,, with m k can be swept away by some other town.
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Proof. If m  k, then T,, can be swept away from the right due to the choice df. In the
remaining case we haven j k.

that T, can sweepl,, away. If this is not the case, therr, ", for someqwith p gq=a m. But
this means that ' is greater than all the numbersr; with k @ i @ m 1, soT, can sweepTly
away. This contradicts the choice off. I

Comment 1. One may employ the same ideas within the inductive approachHere we sketch such
a solution.

away.
If T, cannot sweepT; away, then it remains to prove that T, can be swept away by some other
town. This can be established as in the second paragraph of ¢hproof of Claim 2.

If T, can sweepl; away, then it remains to show that T, cannot be swept away by any other town.

sweepT; away, so that they cannot sweepT,, away as well.

Comment 2. Here we sketch yet another inductive approach. Assume thath j 1. Firstly, we nd a
town which can be swept away by each of its neighbors (each tawhas two neighbors, except for the
bordering ones each of which has one); we call such townlaser. Such a town exists, because there
aren 1 pairs of neighboring towns, and in each of them there is onlypne which can sweep the other
away; so there exists a town which is a winner in none of thesegis.

Notice that a loser can be swept away, but it cannot sweep any ther town away (due to its
neighbors' protection). Now we remove a loser, andguggestits left bulldozer to its right neighbor (if
it exists), and its right bulldozer to a left one (if it exists). Surely, a town accepts a suggestion if a
suggested bulldozer is larger than the town's one of the samerientation.

Notice that suggested bulldozers are useless in attack (byhe de nition of a loser), but may serve
for defensive purposes. Moreover, each suggested bullddzeprotection works for the same pairs of
remaining towns as before the removal.

By the induction hypothesis, the new con guration contains exactly one town which cannot be
swept away. The arguments above show that the initial one als satis es this property.

Solution 3.  We separately prove thatpqthere exists a town which cannot be swept away,
and that pi gthere is at most one such town. We also make use of the two obsdimas from
the previous solutions.

To prove pgg assume contrariwise that every town can be swept away. Let be the leftmost
town; next, for everyk 1;2;::: we inductively choosdy ; to be some town which can sweep
ty away. Now we claim that for everyk  1;2;:::, the town ty ; is to the right of ty; this leads
to the contradiction, since the number of towns is nite.

Induction on k. The base cas& 1 is clear due to the choice of;. Assume now that for
allj with1a j Kk, the townt; ;is to the right of t;. Suppose thatt, ; is situated to the left
of tx; then it lies betweent; andt; ; (possibly coinciding witht;) for somej k. Therefore,
t, 1 can be swept away byt; 1, which shows that it cannot sweeqt; | away | so tyx 1 also
cannot sweept, away. This contradiction proves the induction step.

To prove pig we also argue indirectly and choose two town& and B neither of which can
be swept away, withA being to the left of B. Consider the largest bulldozeb between them
(taking into consideration the right bulldozer of A and the left bulldozer ofB). Without loss
of generality, b is a left bulldozer; then it is situated in some town to the right ofA, and this
town may sweepA away since nothing prevents it from doing that. A contradiction.
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Comment 3. The Problem Selection Committee decided to reformulate thé problem. The original
formulation was as follows.

Let n be a positive integer. There aren cards in a deck, enumerated from bottom to top with
numbers1;2;:::;n. For eachi 1;2;:::;n, an even numbera; is printed on the lower side and an
odd numberh is printed on the upper side of theit card. We say that theit" card opensthe j card,
ifi jandb a foreveryk i L 2:::;j. Similarly, we say that the i!" card closesthe
jth card, if i j j anda b foreveryk i 1;i 2;:::;j. Prove that the deck contains exactly one
card which is neither opened nor closed by any other card.
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C2. Let V be a nite set of points in the plane. We say thatV is balancedif for any two
distinct points A;B PV, there exists a pointC PV such that AC BC. We say thatV is
center-free if for any distinct points A;B;C PV, there does not exist a pointP PV such that
PA PB PC.

(a) Show that for all n ¥ 3, there exists a balanced set consisting ofpoints.

(b) For which n ¥ 3 does there exist a balanced, center-free set consistinghgboints?

(Netherlands)
Answer for part ( b). All odd integersn ¥ 3.
Solution.
Part ( a). Assume thatn is odd. Consider a regulan-gon. Label the vertices of then-gon
as A Ay i A, in counter-clockwise order, and seV¥ t Aq;:::;Apu We check thatV is
balanced. For any two distinct verticesA; and A, let k P t1;2;:::;nu be the solution of
2k i j pnmodng Then, sincek i j k pmodng we haveA;Ax AjAy, as required.

Now assume thatn is even. Consider a regulapg3n  6¢gon, and let O be its circum-

always haveOA; OA;. We now consider the vertice®© and A;. First note that the triangle
OAjAn2 1 i is equilateral for alli @ 3. Hence, ifi @ 7, then we haveOA.; 1 i AiAng 1 s
otherwise, ifi j %, then we haveOA; > 1  AjA; np2 1. This completes the proof.

An example of such a construction when 10 is shown in Figure 1.

Figure 1

Comment ( a). There are many ways to construct an example by placing equiliral triangles in a
circle. Here we present one general method.

construct a set of even cardinality, put extra points C;D; E on the circle such that triangles OCD
and ODE are equilateral (see Figure 2). Thenv t O;A1;B1;:::;Ak;Bk;C;D;Euis balanced.

Part ( b). We now show that there exists a balanced, center-free set caniag n points for
all odd n ¥ 3, and that one does not exist for any even ¥ 3.

If nis odd, then letV be the set of vertices of a regulan-gon. We have shown in part4)
that V is balanced. We claim thatV is also center-free. Indeed, iP is a point such that
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PA PB PC for some three distinct verticesA; B and C, then P is the circumcenter of
the n-gon, which is not contained inV.

Now suppose thatV is a balanced, center-free set of even cardinality. We will derive a
contradiction. For a pair of distinct points A;B PV, we say that a pointC PV is associated
with the pair tA;Buif AC  BC. Sings therp alre%1q pairs of points, there exists a point

P PV which is associated with at least "9 n 1 pairs. Note that none of these] pairs
can contain P, so that the union of these3 pairs consists of at mosin 1 points. Hence
there exist two such pairs that share a point. Let these two pairséxA;BuandtA; Cu. Then

PA PB PC, which is a contradiction.

Comment ( b). We can rephrase the argument in graph theoretic terms as fows. LetV be a
balanced, center-free set consisting ofi points. For any pair of distinct vertices A;B PV and for
any C PV such that AC BC, draw directed edgesA N C and B N C. Then all pairs of vertices
generate altogether at leasinpn  1qdirected edges; since the set is center-free, these edges distinct.
So we must obtain a graph in which any two vertices are conneed in both directions. Now, each
vertex has exactlyn 1 incoming edges, which means thah 1 is even. Hencen is odd.
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C3. Fora nite set A of positive integers, we call a partition ofA into two disjoint nonempty
subsetsA; and A, good if the least common multiple of the elements iMA; is equal to the
greatest common divisor of the elements iA,. Determine the minimum value ofn such that
there exists a set oh positive integers with exactly 2015 good partitions.

(Ukraine)

Answer. 3024.

Solution. Let A t aj;ay;:::;a,u, wherea; a a,. For a nite nonempty set B
of positive integers, denote by lcrB and gcdB the least common multiple and the greatest
common divisor of the elements B, respectively.

Consider any good partitionpA;; A,qof A. By de nition, Icm A; d  gcdA, for some
positive integerd. For any a; P A; and a P A,, we havea; @ d @ &. Therefore, we have
At al,az;:::;aku and A, t a 1;a¢ o i apufor somek with 1 @ kK n. Hence, each

It is convenient now to de ne " Icmml,az; iy agand gk gcdmey 1;a o) :;aanor
la ko n 1. Sog is partitioning exactly when "y g.

We proceed by proving some properties of partitioning elements,ing the following claim.

Claim. If ax ; and a, are partitioning where 2a ke n 1,thengc 1 Ok &.

Proof. Assume that a, ; and a; are partitioning. Since " 1 Ok 1, We have 'y 1 | a.
Therefore,gc '« lcmpy 1;aq ac, andge 1 gcdo; okq ax, as desired. I

Property 1. Foreveryk 2;3;:::;n 2, atleast one ofay ;;a, and a, ; is not partitioning.

Proof. Suppose, to the contrary, that all three numbersy , ax, and ax ; are partitioning. The
claim yields thatay 1 g ak, a contradiction. I

Property 2. The elementsa; and a, cannot be simultaneously partitioning. Also,a, , and
a, 1 cannot be simultaneously partitioning

Proof. Assume thata; and a, are partitioning. By the claim, it follows that a, g ;
lcmpa;q a;, a contradiction.

Similarly, assume thata, , and a, ; are partitioning. The claim yields thata, 1 g, 1
gcdm,q an, a contradiction. I

Now let A be an n-element set with exactly 2015 good partitions. Clearly, we have
n ¥ 5. Using Property 2, we nd that there is at most oge qartltlonlng elenent in each
of ta;;auandta, ,;a, i1u By Property 1, there are at least "2 n\on qglrtltloqmg elements

in tag;as;:::;a, su Therefare, there are at mospn  1q 2 ”T #0297 partitioning

elements inA. Thus, 2229 ¥ 2015, which implies thatn ¥ 3024.

Finally, we show that there exists a set of 3024 positive integers wittkactly 2015 parti-
tioning elements. Indeed, inthe seA t 2 6;3 6;6 '|0o i o 1007, each element of the
form 3 6 or 6, except 6°%, is partitioning.

Therefore, the minimum possible value af is 3024.

Comment. Here we will work gut thergeneral case when 2015 is replaced tan arbitrary positive
integer m. Note that the bound Zp” 29" ¥ m obtained in ths soIIutlon is, in fact, true for any positive

integers m and n. Using this bound onecan ndthatn¥ 30 _1

To show that the bound is sharp, one constructs a set of%m 1 elements with exactly m good
partitions. Indeed, the minimum is attained on the sett6';2 6';3 6' |Ono iot 1u'Y t6'u for every
evenm 2t,andt2 6;3 6;6 '|0miat luforeveryoddm 2t 1.
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C4. Let n be a positive integer. Two playersA and B play a game in which they take turns
choosing positive integer& @ n. The rules of the game are:

pq A player cannot choose a number that has been chosen by eitherygaon any previous
turn.

pi g A player cannot choose a number consecutive to any of those thayer has already chosen
on any previous turn.

pii g The game is a draw if all numbers have been chosen; otherwise theyptawho cannot
choose a number anymore loses the game.

The player A takes the rst turn. Determine the outcome of the game, assuminthat both
players use optimal strategies.
(Finland)

Answer. The game ends in a draw when 1;2;4;6; otherwiseB wins.

Solution.  For brevity, we denote byrnsthe sett1;2;:::;nu.

Firstly, we show that B wins whenevem 1;2;4; 6. For this purpose, we provide a strategy
which guarantees thatB can always make a move afteA’'s move, and also guarantees that the
game does not end in a draw.

We begin with an important observation.

Lemma. Suppose thatB's rst pick is n and that A has made thek!™ move wherek ¥ 2. Then
B can also make thek™ move.

Proof. Let S be the set of the rstk numbers chosen byA. SinceS does not contain consecutive
integers, we see that the setns zS consists ofk \contiguous components” if 1IPS, andk 1
components otherwise. SincB has chosen onlk 1 numbers, there is at least one component
of rns zS consisting of numbers not yet picked byd. Hence,B can choose a number from this
component. I

We will now describe a winning strategy foB, whenn 1;2;4;6. By symmetry, we may
assume thatA's rst choice is a number not exceedind>*. SoB can pick the numbern in
B's rst turn. We now consider two cases.

Case 1. nis odd andn ¥ 3. The only way the game ends in a draw is thaf eventually picks
all the odd numbers from the setns However,B has already chosem, so this cannot happen.
Thus B can continue to apply the lemma untilA cannot make a move.

Case 2. nis even andn ¥ 8. SinceB has pickedn, the game is a draw only ifA can
eventually choose all the odd numbers from the seth 1s SoB picks a number from the set
t1;3;5;:::;n 3unot already chosen byA, on B's second move. This is possible since the set
consists of”T2 ¥ 3 numbers andA has chosen only 2 numbers. Hereaft® can apply the
lemma until A cannot make a move.

Hence, in both case#\ loses.

We are left with the casesn  1;2;4;6. The game is trivially a draw whenn  1;2. When
n 4, A hasto rstpick 1 to avoid losing. Similarly, B has to choose 4 as well. It then follows
that the game ends in a draw.

Whenn 6, B gets at least a draw by the lemma or by using a mirror strategy. On th
other hand, A may also get at least a draw in the following way. In the rst turn,A chooses 1.
After B's response by a numbeb, A nds a neighbor ¢ of b which di ers from 1 and 2, and
reservesc for A's third move. Now, clearlyA can make the second move by choosing a number
dierent from 1;2;c 1;c;c 1. ThereforeA will not lose.
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Comment 1. We present some explicit winning strategies forB.

We start with the case n is odd andn ¥ 3. B starts by picking n in the rstturn. On the k™ move
for k ¥ 2, B chooses the number exactly 1 less thai\'s k™ pick. The only special case is wherA's
ki choice is 1. In this situation, A's rst pick was a number aj 1 and B can respond by choosing
a 1 on the k™ move instead.

We now give an alternative winning strategy in the casen is even andn ¥ 8. We rst present a
winning strategy for the case whenA's rst pick is 1. We consider two cases depending orA's second
move.

Case 1. A's second pick is3. Then B choosesn 3 on the second move. On the&™™ move, B chooses
the number exactly 1 less thanA's ki pick except that B chooses 2 ifA's k" pickisn 2orn 1.

Case 2. A's second pick isaj 3. Then B choosesa 2 on the second move. Afterwards on the
k™ move, B picks the number exactly 1 less thanA's k™ pick.

One may easily see that this strategy guarantee®'s victory, when A's rst pick is 1.

The following claim shows how to extend the strategy to the geeral case.

Claim. Assume that B has an explicit strategy leading to a victory after A picks 1 on the rst move.
Then B also has an explicit strategy leading to a victory after any rst moves ofA.

Proof. Let S be an optimal strategy of B after A picks 1 on the rst move. Assume that A picks some
number aj 1 on this move; we show howB can make use ofS in order to win in this case.

In parallel to the real play, B starts an imaginary play. The positions in these plays dier by
ipping the segment rl; as so, if a player chooses some numberin the real play, then the same player
chooses a numbex ora 1 X in the imaginary play, depending on whetherx | a or x @ a. Thus
A's rst pick in the imaginary play is 1.

Clearly, a number is chosen in the real play exactly if the coresponding number is chosen in the
imaginary one. Next, if an unchosen number is neighboring tmne chosen byA in the imaginary play,
then the corresponding number also has this property in the eal play, soA also cannot choose it.
One can easily see that a similar statement with real and imamary plays interchanged holds forB
instead of A.

Thus, when A makes some move in the real playB may imagine the corresponding legal move in
the imaginary one. Then B chooses the response according t8 in the imaginary game and makes
the corresponding legal move in the real one. Acting soB wins the imaginary game, thusB will also
win the real one. |

Hence,B has a winning strategy for all evenn greater or equal to 8.

Notice that the claim can also be used to simplify the argumehwhen n is odd.

Comment 2.  One may also employ symmetry whem is odd. In particular, B could use a mirror
strategy. However, additional ideas are required to modifythe strategy after A picks ”—21



32 IMO 2015 Thailand

C5. Consider an in nite sequenceny; a,; : : : of positive integers witha, & 2015 for alli ¥ 1.
Suppose that for any two distinct indices andj we havei a | &.

Prove that there exist two positive integersb and N such that

g  bg = 1007

i m 1

whenevernj m ¥ N.
(Australia)

Solution 1. We visualize the set of positive integers as a sequence of points. Eachn we
draw an arrow emerging frorm that points to n  a,; so thelengthof this arrow isa,. Due to
the conditionthatm a, n a, form n, each positive integer receives at most one arrow.
There are some positive integers, such as 1, that receive no arspthese will be referred to as
starting pointsin the sequel. When one starts at any of the starting points and kps following
the arrows, one is led to an in nite path, called itsray, that visits a strictly increasing sequence
of positive integers. Since the length of any arrow is at most 201%ich a ray, say with starting
point s, meets every interval of the formrn;n 2014 with n ¥ s at least once.

Suppose for the sake of contradiction that there would be at lea®016 starting points.
Then we could take an integen that is larger than the rst 2016 starting points. But now the
interval rn;n 2014 must be met by at least 2016 rays in distinct points, which is absurd. &/
have thereby shown that the numbeib of starting points satises 1o ba 2015. LetN denote
any integer that is larger than all starting points. We contend thatb and N are as Eequired.

To see this, let any two integersm and n with n j m ¥ N be given. The sum [ = . 4&

enumerate in corresponding order the numbers de ned similarly withespect ton. Then the
list of dierencesy; Xi;:::;¥p» Xp consists of the lengths of these paths and possibly some
zeros corresponding to empty paths. Consequently, we obtain

n b
i m 1 j 1
whence
n b b
pe o P nqg X; mq
i m 1 j 1 i1

Now each of theb rays meets the intervalrm 1;m 2015 at some point and thusx;
m;::.;X, m arebdistinct members of the set1;2;:::;2015. Moreover, sincem 1 is not a
starting point, it must belong to some ray; so 1 has to appear amorfese numbers, wherefore

b 1 b b 1
1 g 1lge P mqel R016 b ja:
i1 i1 i1
The same argument applied ton and y;;:::;Vp yields
b 1 b b 1

1 g 1ge p; ngel ~ R016 b jq

i1 i1 i1
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So altogether we get

n b1
" p bge’ @016 b jg pj 19 pb 1qR015 kg
im1 i1
2
o P_19p2015 B9 ° 07,

2
as desired.
Solution 2. Sets, n a, for all positive integersn. By our assumptions, we have
n los,on 2015

for all n PZ, . The members of the sequenc®;; s,; ::: are distinct. We shall investigate the
set

M Z,pzts;;Sp; iUt
Claim. At most 2015 numbers belong tiM .

Proof. Otherwise let m; m, Myo16 be any 2016 distinct elements fronM . For
n Moo16 WE have

tsy;iisspuYtmy i mopeu ,, t 1;2;0::n 2015,

where on the left-hand side we have a disjoint union containing altoiper n - 2016 elements.
But the set on the right-hand side has onlyn 2015 elements. This contradiction proves our
claim. |

Now we work towards proving that the positive integerd | M| and N  maxpM qare as
required. Recall that we have just showr = 2015.

Let us consider any integer ¥ N. As in the proof of the above claim, we see that
B, MYts;;::::su Q)

is a subset ofl;r 2015 XZ with preciselyb r elements. Due to the de nitions ofM and N,
we also knowrl;r 1sXZ , B,. It follows that there is a setC, , t 1;2;:::;2014 with
IC] b 1and (
B, rr 1sXZ Y r 1 x xPC, : (2)

For any nite set of integersJ we denote the sum of its elements by J. Now the equations (1)
and (2) give rise to two ways of computing B, and the comparison of both methods leads to

5 5 5 5

M Si | m 1q C;
or in other words to
M m bg b~ C: 3)

After this preparation, we consider any two integersn and n with n j m ¥ N. Plugging
r nandr minto (3) and subtracting the estimates that result, we deduce

5 5 5

pa g Cn Cm:
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SinceC, and C,, are subsets ot1;2;:::;2014with |C,| | Cn| b 1, itis clear that the

absolute value of the right-hand side of the above inequality attainss largest possible value if
eitherCy,, t 1;2;:::;b luandC, t 2016 b;:::;2014y or the other way around. In these
two cases we have

5

C. Cm pb 1q®015 hq;

so in the general case we nd

n 2
" m bpopb 192015 bya B 1 p22015 by

im 1

1007 ;

as desired.

Comment. The setsC,, may be visualized by means of the following process: Start wh an empty
blackboard. For n ¥ 1, the following happens during then' step. The number a, gets written on
the blackboard, then all numbers currently on the blackboad are decreased by 1, and nally all zeros
that have arisen get swept away.

It is not hard to see that the numbers present on the blackboad after n steps are distinct and
form the set C,. Moreover, it is possible to complete a solution based on tlsi idea.
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C6. Let S be a nonempty set of positive integers. We say that a positive intege is cleanif
it has a unique representation as a sum of an odd number of distindements fromS. Prove
that there exist in nitely many positive integers that are not clean.

(U.S.A)

Solution 1. De ne an odd (respectively, ever) representationof n to be a representation oh
as a sum of an odd (respectively, even) number of distinct elememtS. Let Z; ; denote the
set of all positive integers.

Suppose, to the contrary, that there exist only nitely many posiive integers that are not
clean. Therefore, there exists a positive integéd such that every integern j N has exactly
one odd representation.

Clearly, S is in nite. We now claim the following properties of odd and even represtations.

Property 1. Any positive integer n has at most one odd and at most one even representation.

Proof. We rst show that every integer n has at most one even representation. Sin&as in nite,
there existsx PS such thatx | maxtn; Nu. Then, the numbern x must be clean, andk does
not appear in any even representation afi. If n has more than one even representation, then
we obtain two distinct odd representations oh  x by adding x to the even representations
of n, which is impossible. Thereforen can have at most one even representation.

Similarly, there exist two distinct elementsy;z P S such thaty;z j maxtn;Nu. If n has
more than one odd representation, then we obtain two distinct odepresentationsoh y z
by addingy and z to the odd representations oh. This is again a contradiction. I

Property 2. Fix s P S. Suppose that a numbem j N has no even representation. Then
n 2as has an even representation containing for all integersa ¥ 1.

Proof. Itis su cient to prove the following statement: If n has no even representation withous,
thenn 2shas an even representation containing(and hence no even representation withowt
by Property 1).

Notice that the odd representation oin s does not contains; otherwise, we have an even
representation ofn without s. Then, addings to this odd representation ofn s, we get that
n 2s has an even representation containing, as desired. I

Property 3. Every su ciently large integer has an even representation.

implies that the setZ, t r 2as: a ¥ Ou contains at most one number exceediny with
no even representation. ThereforeZ, contains nitely many positive integers with no even
representation, and so doesg, o fs 1 Zr. I

In view of Properties 1 and 3, we may assume th&d is chosen such that everynj N has
exactly one odd and exactly one even representation. In particuJeeach elementsj N of S
has an even representation.

Property 4. Foranys;tPSwith N s t, the even representation of containss.

Proof. Suppose the contrary. Thens t has at least two odd representations: one obtained by
adding s to the even representation of and one obtained by adding to the even representation
of s. Since the latter does not contairs, these two odd representations o§ t are distinct, a
contradiction. I

o

Lets; s be all the elements ofS, and set , ,” . Si for each nonnegative
integer n. Fix an integer k such thatsy | N. Then, Property 4 implies that for everyi j k
the even representation o§; contains all the numberssy;sc 1;:::;S 1. Therefore,

Si Sk Sk 1 Si 1 R i1 k1 Ry (1)

whereR; is a sum of some 0$;;:::;S« 1. In particular, 0 @ R;j & s Sk 1 K 1.
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Let jo be aninteger satisfyingo i kand j, i 2 « 1. Then (1) shows that, for everyj i jo,
S 1¥ k1i {2 (2)
Next, let pj jo be an index such thatR, min;; j, Ri. Then,
Sp 1 Sk Sk 1 S Rp1 pPspy Ry sp Rp 1 ¥ 2sg

Therefore, there is no element of larger than s, but smaller than 2s,. It follows that the
even representation of 2s, does not contain any element larger thas,. On the other hand,
inequality (2) yields 25, | s; Sp 1, SO Mmust contain a term larger thans, ;. Thus,
it must contain s,. After removing s, from , we have thats, has an odd representation not
containing sp, which contradicts Property 1 sinces, itself also forms an odd representation
of sp.

Solution 2. We will also use Property 1 from Solution 1.

We rst de ne some terminology and notations used in this solution. et Zy o denote the set
of all nonnegative integers. All sums mentioned are regarded asrsiof distinct elements ofS.
Moreover, a sum is calleevenor odd depending on the parity of the number of terms in it. All
closed or open intervals refer to sets of all integers inside them,.erg;ds t x PZ:a®o x @& bu

Again, lets; s be all elements ofS, and denote | ,” . Si for each positive
integern. Let O, (respectively,E,) be the set of.numbers representable as an odd (respectively,
even) sum of elements ofs;;:::;s,u. SetE ﬁ .Enand O ﬁ 1 On. We assume that

O PE, since 0 is representable as a sum of 0 terms.

We now proceed to our proof. Assume, to the contrary, that thhe exist only nitely
many positive integers that are not clean and denote the number nbn-clean positive integers
by m 1. Clearly, S is in nite. By Property 1 from Solution 1, every positive integern has at
most one odd and at most one even representation.

Step 1. We estimates, ; and , ;.

Upper bounds Property 1 yields|O,| | En] 2" %, sorl;2" 1 mszO, ¥ m. Hence,
there exists a clean integekx, P ;2" 1 ms zO,. The de nition of O, then yields that the
odd representation ofx,, contains a term larger thans,. Therefore,s, ;@ x, @ 2" 1 m for
every positive integern. Moreover, sinces; is the smallest clean number, we get; s; @ m.
Then,

n 1 n 1

hn1 s s;2 @2 mgm 2 1pn 1gn
i 2 i 2
for every positive integern. Notice that this estimate also holds fon 0.

Lower bounds SinceO,, ;,r 1, , 1Swehave , 1 ¥|0, ;| 2" forall positive integersn.
Then,
Sv1 n1 n¥22p22t 1 nmg 22! 1 nm

for every positive integemn.
Combining the above inequalities, we have
21 1 nmos, ;82! m and 20 ,,82" 1 pn 1gn; (3)
for every positive integemn.

Step 2. We prove Property 3 from Solution 1.

For every integerx and set of integersyY, denex Y t x y:yPYu
In view of Property 1, we get

Ehn 1 En\psh i1 Onq and On1 On\ps, 1 Eng

where\ denotes the disjoint union operator. Notice also thas, , ¥ 2" 1 pn 1gn j
21 1 nm¥ |, forevery suciently large n. We now claim the following.
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Claiml. pn Sy 1S 2 Sn 19. En for every su ciently large n.

Proof. For suciently large n, all elements ofp ,;s, .q are clean. Clearly, the elements
of p n;Sn 29 can be in neitherO, nor 0Oz 0O, ;. SO,pn;Sh 20, On 120, Sy 1 En,
which yields the claim. I

Now, Claim 1 together with inequalities (3) implies that, for all su ciently large n,
E..En...Pn Sh 1;Sn 2 Snh10..20m;2" ' pn 2gn:

This easily yields thatZyo zE is also nite. SinceZyozO is also nite, by Property 1, there
exists a positive integerN such that every integern ;| N has exactly one even and one odd
representation.

Step 3. We investigate the structures ofg,, and O,.

can its complement ,, z. Thus, we getEj, on  Eon. Similarly, we have
E2n 2n E2n; OZn 2n OZn; E2n 1 2n 1 OZn 15 OZn 1 2n 1 E2n 1- (4)

Claim 2. For every su ciently large n, we have

ro; »s..0n...MN; n Ngq and ro; ns..En ... N; » Ng

Proof. Clearly O,; E,, , r O; ,sfor every positive integem. We now proveO,;E, ... N; , Ng

Taking n su ciently large, we may assume thats, ¥ 2" * 1 nmj i@ * 1 nmg¥ .{2.

Therefore, the odd representation of every element gN; ,{2s cannot contain a term larger
than s,. Thus, pN; »{2s, O,. Similarly, sinces, 1 S;i n{2, we also haveN; .,{2s, E,.

Equations (4) then yield that, for su ciently large n, the interval pN; , Nqis a subset of
both O, and E,, as desired. I

Step 4. We obtain a nal contradiction.

Notice that 0 P ZyozO and 1 P Zyo zE. Therefore, the setsZyozO and Zy, ZE are
nonempty. Denoteo maxpZyozOgande maxpZyozEqg Observe also thate;oo N.

Taking k su ciently large, we may assume that » i 2N and that Claim 2 holds for
all n ¥ 2k. Due to (4) and Claim 2, we have that 5 eis the minimal number greater thanN
which isnotin Ey, i.e., % € Sy 1 Si. Similarly,

ok O Sy 1; %k 1 € Sk 2 and 2k 1 O Sy 2 Si

Therefore, we have

Sy PSxk 1 S1 Sk 1 P « € p x 0 O €
P 2«1 €© P k1 O Sxk 2 PSxk 2 S10 S1;

which is impossible sinces; j O.
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C7. In a company of people some pairs are enemies. A group of people iedainsociable
if the number of members in the group is odd and at least 3, and it is pxble to arrange all
its members around a round table so that every two neighbors areemies. Given that there
are at most 2015 unsociable groups, prove that it is possible to piidn the company into 11
parts so that no two enemies are in the same part.

(Russia)

Solution 1. Let G p V;Eqgbe a graph whereV is the set of people in the company an&

is the set of the enemy pairs | the edges of the graph. In this languge, partitioning into 11

disjoint enemy-free subsets means properly coloring the verticesthis graph with 11 colors.
We will prove the following more general statement.

Claim. Let G be a graph with chromatic numberk ¥ 3. Then G contains at least 2 1 k
unsociable groups.

Recall that the chromatic number ofG is the leastk such that a proper coloring
VoIl (1)

exists. In view of 21 12 2015, the claim implies the problem statement.
Let G be a graph with chromatic numberk. We say that a proper coloring (1) ofG is

leximinimal, if the k-tuple pM|; |V2|; :::; [Vk|qis lexicographically minimal; in other words, the
following conditions are satis ed: the numbem; | Vi| is minimal; the numbern, | V,| is

minimal, subject to the previously chosen value afy; ... ; the numberny 1 | Vk 1| is minimal,

subject to the previously chosen values af;;:::;nx »

The following lemma is the core of the proof.

Lemma 1. Suppose thatG p V;Eqis a graph with odd chromatic numberk ¥ 3, and let (1)
be one of its leximinimal colorings. TherG contains an odd cycle which visits all color classes

Proof of Lemma 1. Let us call a cyclecolorful if it visits all color classes.
Due to the de nition of the chromatic number, V; is nonempty. Choose an arbitrary vertex
v PV;. We construct a colorful odd cycle that has only one vertex iN;, and this vertex isv.

in counterclockwise circular order around it. For convenience, l&t, 1 V.. We will draw
arrows to add direction to some edges @&, and mark the vertices these arrows point to. First
we draw arrows fromv to all its neighbors inV,, and mark all those neighbors. If some vertex
uPV, with i Pt23;:::;kuis already marked, we draw arrows fronu to all its neighbors
in V; 1 which are not marked yet, and we mark all of them. We proceed doirigis as long as
it is possible. The process of marking is exempli ed in Figure 1.

Notice that by the rules of our process, in the nal state, markedrertices inV; cannot have
unmarked neighbors inV; ;. Moreover,v is connected to all marked vertices by directed paths.

Now move each marked vertex to the next color class in circular ordésee an example in
Figure 3). In view of the arguments above, the obtained coloring,\ W,\ \ W is proper.
Notice that v has a neighbow PW,, because otherwise

Viztvu \ WoYtvu \ W3\ W,
would be a proper coloring lexicographically smaller than (1). M was unmarked, i.e.w was

an element ofV,, then it would be marked at the beginning of the process and thus wexd
to Vi, which did not happen. Thereforew is marked andw P V.
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Figure 1 Figure 2

Sincew is marked, there exists a directed path fronv to w. This path moves through the

Closing this path by the edgew N v, we get a colorful odd cycle, as required. I

Proof of the claim. Let us choose a leximinimal coloring (1) db. Forevery setC ,t 1;2;:::;ku
such that |C| is odd and greater than 1, we will provide an odd cycle visiting exactlyhbse
color classes whose indices are listed in the €&t This property ensures that we have di erent
cycles for di erent choices ofC, and it proves the claim because there aré 2> k choices for
the setC. »

Let Vc e Ve, and let G¢ be the induced subgraph ofs on the vertex setVe. We
also have the induced coloring 0¥ with |C| colors; this coloring is of course proper. Notice
further that the induced coloring is leximinimal: if we had a lexicographally smaller coloring
pPWV.apc Of Gc, then these classes, together the original color clas&édor i RC, would provide
a proper coloring which is lexicographically smaller than (1). Hence Lena 1, applied to the
subgraph G¢ and its leximinimal coloring pV.gec, provides an odd cycle that visits exactly
those color classes that are listed in the s€l. I

Solution 2.  We provide a di erent proof of the claim from the previous solution.

We say that a graph iscritical if deleting any vertex from the graph decreases the graph's
chromatic number. Obviously every graph contains a critical inducesubgraph with the same
chromatic number.

Lemma 2. Suppose thatG p V;Eqis a critical graph with chromatic numberk ¥ 3. Then
every vertexv of G is contained in at least 2 2 1 unsociable groups.

Proof. For every setX , V, denote bynpX gthe number of neighbors of/ in the set X .

SinceG is critical, there exists a proper coloring o6 ztvuwith k 1 colors, so there exists
a proper coloringV Vi \ V,\ \  V of G such that ; t vu. Among such colorings,
take one for which the sequencenpV,g npVsq :::; npvkq is lexicographically minimal. Clearly,
npvig i O for everyi  2;3;:::;k; otherwiseV,\ :::\ V, {\pV,YViq\V, 1\ :::V would
be a proper coloring ofG with k 1 colors.

We claim that for everyC ,t 2;3;:::; kuwith |C| ¥ 2 being evenG contains an unsociable
group so that the set of its members' colors is precisefy Y t 1u. Since the number of such
setsC is X 2 1, this proves the lemma. Denote the elements 6f by ¢;;:::; ¢ in increasing
order. For brevity, let U; V. Denote byN; the set of neighbors of/ in U;.
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We show that for everyi  1;:::;2° 1 andx P N;j, the subgraph induced byU; Y U; ;
contains a path that connectsx with another point in N; ;. For the sake of contradiction,
suppose that no such path exists. Le® be the set of vertices that lie in the connected component
of X in the subgraph induced byJ; YU; ;,andletP U XS,andQ U; ;XS (see Figure 3).
Since x is separated fromN; i, the setsQ and N; ; are disjoint. So, if we re-colorG by
replacing U, and U; ; by pJ; Y Qq zP and pJ; 1Y PqzQ, respectively, we obtain a proper
coloring such thatnpdiqg npV;qis decreased and onlypJ; 19 npV ,qis increased. That
contradicts the lexicographical minimality of npv,g npVsg :::;npvikq .

Ui Ui+1

i1

be an arbitrary vertex v, in the setN;. Foria 2° 1, if the vertex v; PN; is already de ned,
connecty; to some vertex inN; ; in the subgraph induced byJ; Y U; ;, and add these edges to
the path. Denote the new endpoint of the path by; ;; by the construction we havey; ; PN; ;
again, so the process can be continued. At the end we have a paltat starts at v; PN; and
ends at some/, PN,. Moreover, all edges in this path connect vertices in neighboring skes:
if a vertex of the path lies inU;, then the next vertex lies inU; ; or U; ;. Notice that the path
IS not necessary simple, so take a minimal subpath of it. The minimal lgpath is simple and
connects the same endpointg, and v,:. The property that every edge steps to a neighboring
color class (i.e., fromU; to U; ; or U; ;) is preserved. So the resulting path also visits all of

Us 1 U,
° /7 ’
N2 Ny
-1

. -/

\

Figure 4

Now we prove the claim by induction onk ¥ 3. The base cas& 3 holds by applying
Lemma 2 to a critical subgraph. For the induction step, leGy be a critical k-chromatic sub-
graph of G, and let v be an arbitrary vertex of Go. By Lemma 2,Gg has at least 2 2 1
unsociable groups containing. On the other hand, the graphGg z tvu has chromatic num-
berk 1, soitcontains at least 2 2 p k 1qunsociable groups by the induction hypothesis.
Altogether, thisgives * 2 1 22 pk 1g 2¢ ! kdistinct unsociable groups inG, (and
thus in G).
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Comment 1.  The claim we proved is sharp. The complete graph withk vertices has chromatic
number k and contains exactly X 1k unsociable groups.

Comment 2.  The proof of Lemma 2 works for odd values ofC| ¥ 3 as well. Hence, the second
solution shows the analogous statement that the number of ean sized unsociable groups is at least
2k 1 K.

2



42

IMO 2015 Thailand

This page is intentionally left blank



Shortlisted problems { solutions 43

Geometry

G1l. Let ABC be an acute triangle with orthocenterH. Let G be the point such that the
quadrilateral ABGH is a parallelogram. Letl be the point on the line GH such that AC
bisectsHI . Suppose that the lineAC intersects the circumcircle of the triangleGCI at C
andJ. Prove that1J AH.

(Australia)

Solution 1.  SinceHG k AB and BG k AH, we haveBG K BC and CH K GH. There-
fore, the quadrilateral BGCH is cyclic. SinceH is the orthocenter of the triangleABC, we
have=HAC 90° =ACB =CBH. UsingthatBGCH and CGJI are cyclic quadrilaterals,
we get

=CJI =CGH =CBH =HAC:
Let M be the intersection ofAC and GH, and letD A be the point on the lineAC such
that AH HD. Then=MJI =HAC =MDH.
Since=MJlI =MDH , =IMJ =HMD , and IM MH , the triangles IMJ and

HMD are congruent, and thudsJ HD AH.

Comment. Instead of introducing the point D, one can complete the solution by using the law of
sines in the triangles|JM and AMH , yielding

1J sin=1MJ sin=AMH AH AH

IM sin=MJI sin=HAM MH IM

Solution 2.  Obtain =CGH =HAC as in the previous solution. In the parallelogram
ABGH we have=BAH =HGB. It follows that

=HMC =BAC =BAH =HAC =HGB =CGH =CGB:

So the right trianglesCMH and CGB are similar. Also, in the circumcircle of triangleGCI
we have similar trianglesM1J and MCG. Therefore,

1J MI MH GB AH

CG MC MC GC CG

HencelJ AH .
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G2. Let ABC be atriangle inscribed into a circle with center O. A circle with center A
meets the sideBC at points D and E such that D lies betweenB and E. Moreover, letF and
G be the common points of and . We assume thatF lies on the arcAB of not containing
C, and G lies on the arcAC of not containing B. The circumcircles of the trianglesBDF
and CEG meet the sidesAB and AC again atK and L, respectively. Suppose that the lines
FK and GL are distinct and intersect atX . Prove that the points A, X, and O are collinear.
(Greece)

Solution 1. It suces to prove that the lines FK and GL are symmetric aboutAO. Now
the segmentsAF and AG, being chords of with the same length, are clearly symmetric with
respect toAO. Hence it is enough to show

=KFA =AGL: (1)

Let us denote the circumcircles BBDF and CEG by ! g and! ¢, respectively. To prove (1),
we start from

=KFA =DFG =GFA =DFK:

In view of the circles! g, , and , this may be rewritten as
=KFA =CEG =GBA =DBK =CEG =CBG:

Due to the circles! ¢ and , we obtain =KFA =CLG =CAG =AGL. Thereby the
problem is solved.

Figure 1

Solution 2.  Again, we denote the circumcircle oBDKF by ! z. In addition, we set
=BAC,' =ABF, and =EDA =AED (see Figure 2). Notice thatAF  AG entails
' =GCA, so all three of , ', and respect the \symmetry" betweenB and C of our
con guration. Again, we reduce our task to proving (1).

This time, we start from

2=KFA 2p=DFA =DFKaq:
Since the triangleAFD is isosceles, we have

=DFA =ADF =EDF =BFD =EBF
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Moreover, because of the circleg we have=DFK  =CBA. Altogether, this yields
2=KFA =DFA =BFD =EBF 2=CBA;

which simpli es to
2=KFA =BFA ' =CBA:

Now the quadrilateral AFBC is cyclic, so this entails 2 KFA

Due to the \symmetry" between B and C alluded to above, this argument also shows that
2=AGL ' . This concludes the proof of (1).

Figure 2

Comment 1. Asthe rst solution shows, the assumption that A be the center of may be weakened
to the following one: The center of lies on the line OA. The second solution may be modied to
yield the same result.

Comment 2. It might be interesting to remark that = GDK 9(°. To prove this, let G! denote
the point on diametrically opposite to G. Because of=KDF =KBF =AGF =G™DF, the
points D, K, and G are collinear, which leads to the desired result. Notice thadue to symmetry we
also have=LEF 9.

Moreover, a standard argument shows that the trianglesAGL and BGE are similar. By symmetry
again, also the trianglesAFK and CDF are similar.

There are several ways to derive a solution from these factg-or instance, one may argue that

=KFA =BFA =BFK =BFA =EDG! p18® =AGBq p18® =GGEq
=AGE =AGB =BGE =AGL:

Comment 3.  The original proposal did not contain the point X in the assumption and asked instead
to prove that the lines FK , GL, and AO are concurrent. This di ers from the version given above only
insofar as it also requires to show that these lines cannot bparallel. The Problem Selection Committee
removed this part from the problem intending to make it thus more suitable for the Olympiad.

For the sake of completeness, we would still like to sketch anpossibility for proving FK , AO here.
As the points K and O lie in the angular region =FAG, it su ces to check =KFA =FAO 180"
Multiplying by 2 and making use of the formulae from the secomnl solution, we see that this is equivalent
top q p18® 2 g 36, which in turn is an easy consequence of  180.
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G3. Let ABC be a triangle with=C 9P, and let H be the foot of the altitude fromC.
A point D is chosen inside the triangl€€BH so that CH bisectsAD . Let P be the intersection
point of the linesBD and CH. Let ! be the semicircle with diameterBD that meets the
segmentCB at an interior point. A line through P is tangent to! at Q. Prove that the
linesCQ and AD meet on! .

(Georgia)

Solution 1. Let K be the projection ofD onto AB; then AH HK (see Figure 1). Since
PH k DK, we have
PD HK AH
- 1)
PB HB HB
Let L be the projection ofQ onto DB. SincePQ is tangentto! and=DQB =BLQ
90, we have=PQD =QBP =DQL. Therefore,QD and QB are respectively the internal
and the external bisectors oE P QL. By the angle bisector theorem, we obtain

PD PQ PB

; 2
DL QL BL @)
. .., AH PD DL . L
The relations (1) and (2) yield HB TR So, the spiral similarity centered atB

and sendingA to D mapsH to L. Moreover, sends the semicircle with diameteAB passing
through Cto!. DuetoCH K AB and QL K DB, it follows that pCq Q.

Hence, the trianglesABD and CBQ are similar, so=ADB =CQB. This means that the
lines AD and CQ meet at some pointT, and this point satises=BDT =BQT. Therefore,
T lies on! , as needed.

Figure 1 Figure 2

Comment 1. Since=BAD =BCQ, the point T lies also on the circumcircle of the triangleABC .

Solution 2. Let be the circumcircle of ABC, and let AD meet! at T. Then =ATB
=ACB 9 soT lies on as well. As in the previous solution, letkK be the projection ofD
onto AB; then AH HK (see Figure 2).

Our goal now is to prove that the pointsC, Q, and T are collinear. LetCT meet! again
at QL Then, it su ces to show that PQ'is tangentto! , orthat =PQ'D =Q®BD.

Since the quadrilateralBDQ T is cyclic and the trianglesAHC and KHC are congruent, we
have=QBD =QTD =CTA =CBA =ACH =HCK. Hence, the right triangles

i L HK D
CHK and BQ!D are similar. This implies thatW E—D and thusHK BD CK Q.
. PD HK
Notice that PH k DK ; therefore, we haveﬁ BK and soPD BK HK BD.
Consequently,PD BK HK BD CK Q'D, which yields PO CK
q Y, ) y QD BK'

Since=CKA =KAC =BDQ} thetrianglesCKB andP DQ%are similar, so=P QD
=CBA =QBD, as required.
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Comment 2.  There exist several other ways to prove thatP Qis tangent to ! . For instance, one

PD PQ!. : :
may compute PB and % in terms of AH and HB to verify that PQ® PD PB, concluding that

PQlis tangent to ! .
Another possible approach is the following. As in Solution 2 we introduce the points T and Q*
and mention that the triangles ABC and DBQ ! are similar (see Figure 3).
Let M be the midpoint of AD, and let L be the projection of Q* onto AB. Construct E on the
line AB so that EP is parallel to AD . Projecting from P, we getpA;B;H;Eq pA;D;M; 8q 1.
EA PD

Sinceﬁ DB’ the point P is the image of E under the similarity transform mapping ABC

to DBQL Therefore, we havepD;B ;L;Pq pA;B:H;Eq 1, which means that QD and QB are
respectively the internal and the external bisectors of= P QL. This implies that P Q'is tangent to ! ,
as required.

Solution 3. Introduce the points T and Q! as in the previous solution. Note thatT lies on
the circumcircle of ABC . Here we present yet another proof thaP Q'is tangent to! .

Let be the circle completing the semicircle! . Construct a point F symmetric to C with
respect toAB. Let S T be the second intersection point oF T and (see Figure 4).

Figure 4

Since AC AF, we have=DKC =HCK =CBA =CTA =DTS 180
=SKD. Thus, the points C;K, and S are collinear. Notice also that= QKD =QTD
=HCK =KFH 180® =DKF . This implies that the points F; K, and Q' are collinear.

Applying Pascal 's theorem to the degenerate hexagokQ 'Q'TSS, we get that the tan-
gents to passing through Q! and S intersect onCF. The relation =QTD =DTS yields
that Q' and S are symmetric with respect toBD . Therefore, the two tangents also intersect
on BD. Thus, the two tangents pass throughP. Hence,P Qlis tangent to ! , as needed.
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G4. Let ABC be an acute triangle, and letM be the midpoint of AC. A circle ! passing
through B and M meets the sidesAB and BC again at P and Q, respectively. LetT be
the point such that the quadrilateral BPTQ is a parallelogram. Suppose thal lies on the
circumcircle of the triangleABC . Determine all possible values dBBT {BM .

(Russia)
?_
Answer. 2.

Solution 1. Let S be the center of the parallelogranBPTQ, and letB! B be the point on
the ray BM such that BM  MB ! (see Figure 1). It follows thatABCB !is a parallelogram.
Then,=ABB! =PQM and=BB'A =BBC =MPQ, and so the trianglesABB * and
MQP are similar. It follows that AM and MS are corresponding medians in these triangles.
Hence,
=SMP =B'AM =BCA =BTA: Q)

Since=ACT =PBT and=TAC =TBC =BTP, the trianglesTCA and PBT are

similar. Again, asTM and P S are corresponding medians in these triangles, we have

=MTA =TPS =BQP =BMP: 2)
Now we deal separately with two cases.

Case 1. S does not lie onBM . Since the con guration is symmetric betweerA and C, we
may assume thatS and A lie on the same side with respect to the lin8M .
Applying (1) and (2), we get

=BMS =BMP =SMP =MTA =BTA =MTB;
and sosthe trianglesBSM and BMT are similar. We now haveBM? BS BT BT?*{2, so
BT 2BM .

Case 2. S lies onBM. It follows from (2) that =BCA =MTA =BQP =BMP
(see Figure 2). Thus,PQk AC and PM k AT. Hence,BS{BM BP{BA BM{BT, so
BT2 2BM?ZandBT 2BM .

Figure 1 Figure 2
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Comment 1.  Here is another way to show that the trianglesBSM and BMT are similar. Denote
by the circumcircle of the triangle ABC . Let R be the second point of intersection of and , and
let be the spiral similarity centered at R mapping ! to . Then, one may show that maps each
point X on! toapoint Y on suchthat B, X, andY are collinear (see Figure 3). If we letK and L
be the second points of intersection oBM with and of BT with !, respectively, then it follows that
the triangle MKT is the image ofSML under . We now obtain =BSM  =TMB, which implies
the desired result.

K T
Figure 3 Figure 4

Solution 2. Again, we denote by the circumcircle of the triangle ABC.

Choose the pointsX andY on the raysBA and BC respectively, so tha=EMXB  =MBC
and=BYM =ABM (see Figure 4). Then the triangleBMX andY MB are similar. Since
@PM = BQM , dhe points P Q correspond to each other in these triangles. So, if

g&,then@% pl g BY. Thus

gr 8 % 0 &K &g P
which means thatT lies on the lineXY .

Let B! B be the point on the ray BM such that BM MBL Then =MBA
=MBC =MXB and=CBM =ABM =BY M. This means that the trianglesBM X ,
BAB Y YMB, and B'CB are all similar; henceBA BX BM BB! BC BY. Thus
there exists an inversion centered aB which swapsA with X, M with B and C with Y.

This inversion then swaps with the lige XY, and hence it preserved. Therefore, we have
BT? BM BB! 2BM? andBT 2BM .

Solution 3.  We begin with the following lemma.

Lemma.Let ABCT be a cyclic quadrilateral. LetP and Q be points on the side8A and BC
respectively, such thatBP TQ is a parallelogram. ThenBP BA BQ BC BT?2.

Proof. Let the circumcircle of the triangle QT C meet the line BT again atJ (see Figure 5).
The power of B with respect to this circle yields

BQ BC BJ BT: )
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We also have=TJQ 180 =QCT =TAB and=QTJ =ABT, and so the triangles
TJQ and BAT are similar. We now haveT J{TQ BA{BT. Therefore,

TJ BT TQ BA BP BA: (4)

Combining (3) and (4) now yields the desired result. I

Let X and Y be the midpoints of BA and BC respectively (see Figure 6). Applying the
lemma to the cyclic quadrilateralsP BQM and ABCT , we obtain

BX BP BY BQ BM?

and
BP BA BQ BC BT
I)

SinceBA 2BX andBC 2BY, we haveBT2 2BM?2, and soBT  2BM.

B
AN
A M C
T’ T
Figure 5 Figure 6

Comment 2. Here we give another proof of the lemma usindgPtolemy 's theorem. We readily have
TC BA TA BC AC BT:

The lemma now follows from )
BP BQ BT sin=BCT _

TC TA AC sin=ABC’
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G5. Let ABC be a triangle with CA  CB. Let D, F, and G be the midpoints of the
sidesAB, AC, and BC, respectively. A circle passing throughC and tangent to AB at D
meets the segment&F and BG at H and |, respectively. The pointsHand | tare symmetric
to H and | about F and G, respectively. The lineH4! meetsCD and FG at Q and M,
respectively. The lineCM meets again at P. Prove that CQ QP.

(El Salvador)

Solution 1.  We may assume thatCA j CB. Observe thatH'and | lie inside the segments
CF and CG, respectively. ThereforeM lies outside4 ABC (see Figure 1).
Due to the powers of pointsA and B with respect to the circle , we have

CH! CA AH AC AD? BD? BI BC CIt CB:

Therefore, CH!CF CI11CG. Hence, the quadrilateraH 1 'GF is cyclic, and so=1'HC
=CGF.

Let DF and DG meet again at R and S, respectively. We claim that the pointsR and S
lie on the lineHY %

Observe thatFH'FA FH FC FR FD. Thus, the quadrilateral ADH 'R is cyclic, and
hence=RH¥ =FDA =CGF =I1HIC. Therefore, the pointsR;H? andI *are collinear.
Similarly, the points S; HY, and | *are also collinear, and so all the pointR;H% Q;1%S, and M
are all collinear.

Figure 1 Figure 2

Then,=RSD =RDA =DFG. Hence, the quadrilateraRSGF is cyclic (see Figure 2).
Thereforee MH! MI? MF MG MR MS MP MC. Thus, the quadrilateral CPIH*
is also cyclic. Let! be its circumcircle.

Notice that =HCQ =SDC =SRC and =QCI! =CDR =CSR. Hence,
4CHQ 4RCQand4Cl'Q 4 SCQ andthereforeQH! QR QC? QI! QS.

We apply the inversion with centerQ and radiusQC. Observe that the pointsR; C, and S
are mapped toH% C, and |}, respectively. Therefore, the circumcircle of4 RCS is mapped
to the circumcircle! of 4 H'CI% SinceP and C belong to both circles and the pointC is
preserved by the inversion, we have tha® is also mapped to itself. We then geQP? QC?2.
Hence,QP QC.

Comment 1.  The problem statement still holds when intersects the sides CA and CB outside
segmentsAF and BG, respectively.
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Solution 2.  Let X HI X AB, and let the tangent to at C meetAB at Y. Let XC
meet again at X ! (see Figure 3). Projecting fronC, X, and C again, we havepX; A;D;Bq
pXLtH;D;lg pC;l;D;Hg pY;B;D;Aqg SinceA and B are symmetric aboutD, it follows
that X and Y are also symmetric abouD.

Now, Menelaus ' theorem applied to4 ABC with the line HIX vyields

CH Bl AX AH! CI' BY
HA IC XB HIC 1B YA’

By the converse ofMenelaus ' theorem applied to4 ABC with points H%1%Y, we get that
the points HX 11 Y are collinear.

Figure 3

Let T be the midpoint of CD, and let O be the center of . Let CM meetTY at N. To
avoid confusion, we clean some super uous details out of the pictu(see Figure 4).

LetV MT X CY. SinceMT kYD and DT TC, we getCV VY. Then Ceva's
theorem applied to4 CTY with the point M yields

TQ CV YN TQ YN
QC VY NT QC NT'

Therefore,g—g N So,NQ kCY, and thusNQ K OC.
Note that the points O;N; T, and Y are collinear. Therefore,CQ K ON. So, Q is the
orthocenter of 4 OCN, and henceOQ K CP. Thus, Q lies on the perpendicular bisector

of CP, and thereforeCQ QP, as required.

Figure 4
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Comment 2. The second part of Solution 2 provides a proof of the followig more general statement,
which does not involve a speci ¢ choice ofQ on CD.

Let YC and Y D be two tangents to a circle with center O (see Figure 4). Let "~ be the midline
of 4 YCD parallel to YD. Let Q and M be two points onCD and °, respectively, such that the
line QM passes throughy. Then OQ K CM.



54 IMO 2015 Thailand

G6. Let ABC be an acute triangle withAB | AC, and let be its circumcircle. Let H,
M, and F be the orthocenter of the triangle, the midpoint oBC, and the foot of the altitude
from A, respectively. LetQ and K be the two points on that satisfy = AQH 9¢ and
=QKH 9. Prove that the circumcircles of the trianglesK QH and KFM are tangent to
each other.

(Ukraine)

Solution 1. Let A!be the point diametrically opposite toA on . Since =AQA! 9(° and
=AQH 9(, the points Q, H, and A are collinear. Similarly, if Q' denotes the point on
diametrically opposite to Q, then K, H, and Q! are collinear. Let the lineAHF intersect
again atE; it is known that M is the midpoint of the segmentHA *and that F is the midpoint
of HE . Let J be the midpoint of HQZ

Consider any pointT such that TK is tangent to the circle KQH at K with Q and T
lying on di erent sides of KH (see Figure 1). Then=HKT =HQK and we are to prove
that = MKT =CFK. Thus it remains to show that=HQK =CFK =HKM . Due
to =HQK 90° =QHA'and=CFK 90° =KFA, this means the same as Q'HA?
=KFA =HKM . Now, since the triangleKHE and AHQ !are similar with F and J being
the midpoints of corresponding sides, we havweKFA =HJA, and analogously one may
obtain =HKM  =JQH. Thereby our task is reduced to verifying

=QHA' =HJA =JQH:

Figure 1 Figure 2

To avoid confusion, let us draw a new picture at this moment (see Figai 2). Owing to
=QHA! =JQH =HJQ and =HJA =QJA =HJQ, we just have to show that
2=JQH =QJA. To this end, it su ces to remark that AQA'Q!is a rectangle and thatJ,
being de ned to be the midpoint ofHQ?Y has to lie on the mid parallel ofQA® and Q*A.

Solution 2.  We de ne the points Al and E and prove that the ray MH passes throughQ
in the same way as in the rst solution. Notice that the pointsA® and E can play analogous
roles to the pointsQ and K, respectively: pointAlis the second intersection of the linéMH
with , and E is the point on with the property =HEA! 9 (see Figure 3).

In the circlesKQH and EA'H, the line segmentHQ and HA ' are diameters, respectively;
so, these circles have a common tangentat H, perpendicular toMH . Let R be the radical
center of the circlesABC, KQH and EAH. Their pairwise radical axes are the lineK,
AE and the linet; they all pass throughR. Let S be the midpoint of HR; by = QKH
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Q
Koo~
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A0 E. R
Figure 3

=HEA! 9, the quadrilateral HERK is cyclic and its circumcenter isS; hence we have
SK SE SH. The line BC, being the perpendicular bisector oHE , passes througlst.
The circle HMF also is tangent tot at H; from the power ofS with respect to the circle
HMF we have
SM SF SH? SKZ

So, the power ofS with respect to the circlesKkQH and KFM is SK?2. Therefore, the line
segmentSK is tangent to both circles atK .
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G7. Let ABCD be a convex quadrilateral, and lefP, Q, R, and S be points on the sides
AB, BC, CD, and DA, respectively. Let the line segment® R and QS meet at O. Suppose
that each of the quadrilateralsAP OS, BQOP, CROQ, and DSOR has an incircle. Prove that
the linesAC, PQ, and RS are either concurrent or parallel to each other.

(Bulgaria)

Solution 1. Denote by A, B, ¢, and p the incircles of the quadrilateralsAP OS, BQOP,
CROQ, and DSOR, respectively.

We start with proving that the quadrilateral ABCD also has an incircle which will be
referred to as . Denote the points of tangency as in Figure 1. Itisvell-known that QQ,; 0O,
(if BC k PR, this is obvious; otherwise, one may regard the two circles involved the incircle
and an excircle of the triangle formed by the line®Q, PR, and BC). Similarly, OO; PP;.
Hence we haveQQ; PP;. The other equalities of segment lengths marked in Figure 1 can
be proved analogously. These equalities, together withP,;  AS; and similar ones, yield
AB CD AD BC, as required.

Figure 1

Next, let us draw the lines parallel toQS through P and R, and also draw the lines parallel
to PR through Q and S. These lines form a parallelogram; denote its vertices i, B C?,
and D! as shown in Figure 2.

Since the quadrilateralAP OS has an incircle, we havédP AS OP OS AS A'P.
It is well-known that in this case there also exists a circlé 5, tangent to the four rays AP,
AS, AP, and A'S. It is worth mentioning here that in case when, say, the linedB and A'B*
coincide, the circle! 5 is just tangent to AB at P. We introduce the circles! g, ! ¢, and! p in
a similar manner.

Assume that the radii of the circles! o and ! ¢ are dierent. Let X be the center of the
homothety having a positive scale factor and mappinga to ! .

Now, Monge 's theorem applied to the circled 5, , and ! ¢ shows that the pointsA, C,
and X are collinear. Applying the same theorem to the circlesa, ! g, and ! ¢, we see that
the points P, Q, and X are also collinear. Similarly, the pointsR, S, and X are collinear, as
required.

If the radii of | 5 and ! ¢ are equal but these circles do not coincide, then the degenerate
version of the same theorem yields that the three line&C, PQ, and RS are parallel to the
line of centers oft , and! ..

Finally, we need to say a few words about the case whep and! ¢ coincide (and thus they
also coincide with , ! g, and! p). It may be regarded as the limit case in the following manner.
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Figure 2

Let us x the positions of A, P, O, and S (thus we also x the circles! o, A, B, and p). Now
we vary the circle ¢ inscribed into = QOR; for each of its positions, one may reconstruct the
lines BC and CD as the external common tangents tog, ¢ and ¢, p dierent from PR
and QS, respectively. After such variation, the circle changes, so theasult obtained above
may be applied.

Solution 2. Applying Menelaus ' theorem to 4 ABC with the line PQ and to 4 ACD with
the line RS, we see that the lineAC meetsP Q and RS at the same point (possibly at in nity)
if and only if

AP BQ CR DS

PB QC RD SA @)

So, it su ces to prove (1).
We start with the following result.

Lemma 1. Let EFGH be a circumscribed quadrilateral, and leM be its incenter. Then

EF FG FM2
GH HE HM?Z

Proof. Notice that =EMH =GMF =FME =HMG 18® =FGM =MGH, and
=HEM =MEF (see Figure 3). By the law of sines, we get

EF FG sin=FME sin=GMF sin=HMG sin=EMH GH HE
FM FM sin=MEF sin=FGM sin=MGH sin=HEM HM HM
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B

Figure 3 Figure 4

We denote byl, J, K, and L the incenters of the quadrilateralsAP OS, BQOP, CROQ,
and DSOR, respectively. Applying Lemma 1 to these four quadrilaterals we get

AP PO BQ QO CR RO DS SO PI? QJ?2 RK? SL?
OS SA OP PB 0OQ QC OR RD SI2 PJ2 QK2 RL?%

which reduces to

AP BQ CR DS PI?2 QJ2 RK2? SL?
PB QC RD SA PJ2 QK2 RLZ S|2

(2)

Next, we have=1PJ =JOI 90, and the line OP separatesl and J (see Figure 4).
This means that the quadrilateral IPJO is cyclic. Similarly, we get that the quadrilateral

JQKO is cyclic with =JQK 90°. Thus, =QKJ =Q0J =JOP =JIP . Hence,
the right triangles IPJ and KQJ are similar. Therefore,% %—5 Likewise, we obtain
RK SI : . .

RL SO These two equations together with (2) yield (1).

Comment. Instead of using the sine law, one may prove Lemma 1 by the falving approach.

Figure 5

Let N be the point such that 4 NHG 4 MEF and such that N and M lie on di erent sides
of the line GH, as shown in Figure 5. Then=GNH =HMG =FME =HMG 18¢. So,
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the quadrilateral GNHM is cyclic. Thus, =MNH =MGH =FGM and =HMN =HGN

HM HM HN  MF EM
=EFM =MFG. Hence,l\;lFHMé\lM 4 MFG. Therefore, HG ON. HG MG EF

OE ME GF By multiplying these two equations, we complete the proof.

Similarly, we obtain

Solution 3.  We present another approach for showing (1) from Solution 2.
Lemma 2. Let EFGH and E¥F!G'H ! be circumscribed quadrilaterals such that E =E?
=F =F! =G =G! =H =H! 18@. Then

EF GH E¥! GH!?!

FG HE FIG! HEY

Proof. Let M and M be the incenters ofEFGH and E'F'GHY respectively. We use the
notation rXY Z sfor the area of a triangleXY Z.

Taking into account the relaton=FME =FM¥E! 18 together with the analogous
ones, we get

EF GH rMEFs MGHs ME MF sin=FME MG MH sin=HMG

FG HE rMFGs ™mMHEs MF MG sin=GMF MH ME sin=EMH
ME! MF?! sin=FME? MIG* MH?! sin=H'MIG! EF! GH?!
M¥FL MIG! sin=GM¥1 MH! M¥E? sin=EMH! FIGI HE?Y

Figure 6

Denote by h the homothety centered atO that maps the incircle of CROQ to the incircle
of APOS. Let Q! hpQg C' hpCg R! hprg O O, S' S, Al A ,andP! P.
Furthermore, de ne B! APIX CQtand D! A!S!X C'R!as shown in Figure 6. Then

AP 0OS AP! O%s?
PO SA POt SIA?

holds trivially. We also have
CR O0Q CR! olg!

RO QC RIO! QIC!
by the similarity of the quadrilaterals CROQ and C'R'O'Q%
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Next, consider the circumscribed quadrilateral8 QOP and B'Q'0! whose incenters lie
on di erent sides of the quadrilaterals' shared side lin©P O¥PL Observe thatBQ k B'Q?
and that B! and Q! lie on the linesBP and QO, respectively. It is now easy to see that the
two quadrilaterals satisfy the hypotheses of Lemma 2. Thus, wedlg&e

BQ OP BQ! OP!
Q0 PB QIO! PBY

Similarly, we get
DS OR D! OR?

SO RD S0 RDY
Multiplying these four equations, we obtain

AP BQ CR DS AP! BQ! CR! DSt
PB QC RD SA PB! QIC! RD! SAY

3)

Finally, we apply Brianchon 's theorem to the circumscribed hexagoA'P 'R'C'QS! and
deduce that the linesA'CY P'Q% and R!S! are either concurrent or parallel to each other. So,
by Menelaus ' theorem, we obtain

APL BQ! CRR! DS

PBL OC! RDI SAI -

This equation together with (3) yield (1).
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G8. A triangulation of a convex polygon is a partitioning of into triangles by diagonals
having no common points other than the vertices of the polygon. W&ay that a triangulation
is a Thaiangulation if all triangles in it have the same area.

Prove that any two di erent Thaiangulations of a convex polygon dier by exactly two
triangles. (In other words, prove that it is possible to replace oneap of triangles in the rst
Thaiangulation with a di erent pair of triangles so as to obtain the seond Thaiangulation.)

(Bulgaria)

Solution 1. We denote byrSsthe area of a polygorS.

Recall that each triangulation of a convexn-gon has exactlyn 2 triangles. This means
that all triangles in any two Thaiangulations of a convex polygon hawe the same area.

Let T be a triangulation of a convex polygon . If four verticesA, B, C, and D of
form a parallelogram, andT contains two triangles whose union is this parallelogram, then we
say that T contains parallelogramABCD . Notice here that if two ThaiangulationsT,; and T,
of dier by two triangles, then the union of these triangles is a quadilateral each of whose
diagonals bisects its area, i.e., a parallelogram.

We start with proving two properties of triangulations.
Lemma 1. A triangulation of a convex polygon cannot contain two parallelograns.

Proof. Arguing indirectly, assume thatP, and P, are two parallelograms contained in some
triangulation T . If they have a common triangle inT , then we may assume thaP; consists of
triangles ABC and ADC of T, while P, consists of trianglesADC and CDE (see Figure 1).
But then BC k AD k CE, so the three verticed8, C, andE of are collinear, which is absurd.
Assume now thatP; and P, contain no common triangle. LetP; ABCD . The sidesAB,
BC, CD, and DA partition into several parts, and P, is contained in one of them; we may
assume that this part is cut o from P, by AD. Then one may label the vertices oP, by X,
Y, Z,and T so that the polygonABCDXY ZT is convex (see Figure 2; it may happen that
D X and/lor T A, but still this polygon has at least six vertices). But the sum of the
external angles of this polygon aB, C, Y, and Z is already 366, which is impossible. A nal
contradiction. I

E
Z B°
D
D X X
C Y
C
A o

A

B B AT z Y
Figure 1 Figure 2 Figure 3

Lemma 2. Every triangle in a Thaiangulation T of contains a side of .

Proof. Let ABC be a triangle inT. Apply an a ne transform such that ABC maps to an
equilateral triangle; let A'B'C!be the image of this triangle, and !be the image of . Clearly,
T maps into a ThaiangulationT*of 1

Assume that none of the sides of ABB'Clis a side of % Then T1!contains some other
triangles with these sides, sayA'BZ, C'AYY, and B'CX ; notice that AZB X C Y is a convex
hexagon (see Figure 3). The sum of its external anglesXt Y, and Z is less than 368 So one
of these angles (say, aZ) is less than 126, hence=AZB*; 60°. Then Z lies on a circular arc
subtended byA'B!andaving angular measure less than 2%4@onsequently, the altitudeZH
of 4 ABYZ is less than 3ABBY2. ThusrABZs r ABIC% and T lis not a Thaiangulation.
A contradiction. I
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Now we pass to the solution. We say that a triangle in a triangulation ofis an ear if it
contains two sides of . Note that each triangulation of a polygon cotains some ear.

Arguing indirectly, we choose a convex polygon with the least possib number of sides
such that some two Thaiangulationsl; and T, of violate the problem statement (thus has
at least ve sides). Consider now any eaABC in T;, with AC being a diagonal of . If T,
also contains4 ABC, then one may cut4 ABC o from , getting a polygon with a smaller
number of sides which also violates the problem statement. This is ingmble; thusT, does
not contain 4 ABC..

Next, T, contains also another triangle with sideAC, say 4 ACD. By Lemma 2, this
triangle contains a side of , soD is adjacent to eitherA or C on the boundary of . We may
assume thatD is adjacent toC.

Assume that T, does not contain the triangleBCD. Then it contains two di erent trian-
glesBCX and CDY (possibly, with X  Y); since these triangles have no common interior
points, the polygon ABCDY X is convex (see Figure 4). But, sinceABCs rBCXs
rACDs r CDYs we getAX k BC and AY k CD which is impossible. ThusT, con-
tains 4 BCD.

Therefore,rABDs r ABCs r ACDs rBCDs r ABCs and ABCD is a parallelogram
contained inT;. Let T!be the Thaiangulation of obtained from T, by replacing the diago-
nal AC with BD ; then T tis distinct from T, (otherwise T, and T, would di er by two triangles).
Moreover, T ! shares a common eaBCD with T,. As above, cutting this ear away we obtain
that T, and T 1di er by two triangles forming a parallelogram di erent from ABCD . Thus T?
contains two parallelograms, which contradicts Lemma 1.

A A

T
Figure 4 Figure 5

Comment 1. Lemma 2 is equivalent to the well-knownErd $s{Debrunner inequality stating that
for any triangle P QR and any points A, B, C lying on the sidesQR, RP, and P Q, respectively, we
have (

rABC s ¥ min rABRsrBCP srCAQs : @

To derive this inequality from Lemma 2, one may assume that () does not hold, and choose
some pointsX, Y, and Z inside the trianglesBCP, CAQ, and ABR, respectively, so thatrABC s
rABZs rBCXs r CAYs Then a convex hexagonAZBXCY has a Thaiangulation contain-
ing 4 ABC , which contradicts Lemma 2.

Conversely, assume that a ThaiangulationT of contains a triangle ABC none of whose sides
is a side of , and let ABZ, AY C, and XBC be other triangles in T containing the corresponding
sides. ThenAZBXCY is a convex hexagon.

Consider the lines throughA, B, and C parallel to Y Z, ZX , and XY , respectively. They form a
triangle X YY1z 1similar to 4 XY Z (see Figure 5). By (1) we have

rABC s ¥ min rABZ 'srBCX s rCAY ]s( i min rABZ srBCX srCAY s(;

soT is not a Thaiangulation.
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Solution 2. We will make use of the preliminary observations from Solution 1, togeer with
Lemma 1.

Arguing indirectly, we choose a convex polygon with the least possib number of sides
such that some two ThaiangulationsT; and T, of violate the statement (thus has at least
ve sides). Assume thatT, and T, share a diagonal splitting into two smaller polygons
and ,. Since the problem statement holds for any of them, the induced &rangulations of
each of ; dier by two triangles forming a parallelogram (the Thaiangulations indiced on
by T, and T, may not coincide, otherwisel; and T, would di er by at most two triangles). But
both these parallelograms are contained ily; this contradicts Lemma 1. ThereforeT,; and T,
share no diagonal. Hence they also share no triangle.

We consider two cases.

Case 1. Assume that some vertexB8 of is an endpoint of some diagonal inT,, as well as an
endpoint of some diagonal in,.

Let A and C be the vertices of adjacent to B. Then T, contains some trianglesABX
and BCY, while T, contains some trianglesABX * and BCY L Here, some of the pointsX,
X1 Y, andY!may coincide; however, in view of our assumption together with thadt that T,
and T, share no triangle, all four trianglesABX , BCY, ABX % and BCY ! are distinct.

SincerABX s rBCYs rABX s rBCYl we haveXX 1k AB and YY1k BC. Now,
if X Y, then X1and Y!lie on dierent lines passing throughX and are distinct from that
point, so that X! Y1 In this case, we may switch the two Thaiangulations. So, hereaftae
assume thatX Y.

In the convex pentagonABCY X we have either=BAX =AXY | 187 or =XYC
=Y CBj 180 (or both); due to the symmetry, we mayassume that the rst inegality holds.
Let r be the ray emerging fromX and co-directed withAB ; our inequality shows thatr points
to the interior of the pentagon (and thus to the interior of ). The refore, the ray opposite tor
points outside , so X!lies onr; moreover, X !lies on the \arc" CY of not containing X.
So the segmentX X *and Y B intersect (see Figure 6).

Let O be the intersection point of the rays and BC. Since the trianglesABX *and BCY?!
have no common interior points,Y ! must lie on the \arc" CX?! which is situated inside the
triangle XBO . Therefore, the lineY Y! meets two sides ot XBO, none of which may bexB
(otherwise the diagonalsXB and Y Y!'would share a common point). Thug Y!intersectsBO,
which contradicts Y Yk BC.

X

Figure 6

Case 2. In the remaining case, each vertex of is an endpoint of a diagonal iat most one
of T; and T,. On the other hand, a triangulation cannot contain two consecute vertices with
no diagonals from each. Therefore, the vertices of alternatinglyemerge diagonals ifT; and
in T,. In particular, has an even number of sides.
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Next, we may choose ve consecutive vertices, B, C, D, and E of in such a way that
=ABC =BCD; 18F¢ and =BCD =CDE  18¢ (2)

In order to do this, it su ces to choose three consecutive vertieB, C, and D of such that
the sum of their external angles is at most 180 This is possible, since has at least six sides.

—E

Figure 7

We may assume thatT,; has no diagonals fromB and D (and thus contains the trian-
glesABC and CDE), while T, has no diagonals fromA, C, and E (and thus contains the
triangle BCD). Now, sincerABCs r BCDs r CDEs we haveAD k BC and BE k CD
(see Figure 7). By (2) this yields thatAD | BC and BE | CD. Let X AC X BD and
Y CE X BD; then the inequalities above imply thatAX ;| CX andEY j CY.

Finally, T, must also contain some triangleBDZ with Z C; then the ray CZ lies in
the angle ACE. SincerBCDs r BDZ s the diagonalBD bisectsCZ. Together with the
inequalities above, this yields thatZ lies inside the triangleACE (but Z is distinct from A
and E), which is impossible. The nal contradiction.

Comment 2. Case 2 may also be accomplished with the use of Lemma 2. Indeesince each
triangulation of an n-gon containsn 2 triangles neither of which may contain three sides of ,
Lemma 2 yields that each Thaiangulation contains exactly two ears. But each vertex of is a vertex
of an ear either inT; or in T,, so cannot have more than four vertices.



Shortlisted problems { solutions 65

Number Theory

N1. Determine all positive integersM for which the sequenceay; a;; ay;:::, de ned by
Ao % andas 1 actagufork 0;1;2;::: contains at least one integer term.

(Luxembourg)

Answer. All integers M ¥ 2.
Solution 1. Dene h¢ 2a forall k¥ 0. Then

b
be 1 2a 1 Zatau b >
Sincely is an integer, it follows that b, is an integer for allk ¥ 0.
Suppose that the sequencay; a;; a,; ::: does not contain any integer term. Therly, must
be an odd integer for allk ¥ 0, so that

Z N
(o b 1q,
b1 b5 S (1)
Hence b 1 3 )
ho, 3 SR 10 g B SR % )
for all k ¥ 0.

Suppose thatlhy 3 0. Then equation (2) yieldshy 3 O for all k ¥ 0. For eachk ¥ 0,
de ne ¢ to be the highest power of 2 that dividedy, 3. Sincelh, 3 is even for allk ¥ 0, the
number ¢ is positive for everyk ¥ 0.

Note that b, 2 is an odd integer. Therefore, from equation (2), we have that ; ¢ 1.
Thus, the sequencey; ci; C;; @ : : of positive integers is strictly decreasing, a contradiction. So,
by 3= 0, which impliesM 1.

For M 1, we can check that the sequence is constant with % for all k ¥ 0. Therefore,
the answer isM ¥ 2.

Solution 2. We provide an alternative way to showM 1 once equation (1) has been
reached. We claim thath, 3 pmod 2"qfor all kK ¥ 0 andm ¥ 1. If this is true, then we
would havebh, 3 forallk ¥ 0 and henceM 1.

To establish our claim, we proceed by induction om. The base casdyx 3 pmod 2is
true for all k ¥ 0 sinceb, is odd. Now suppose thaty 3 pmod 2"qfor all k ¥ 0. Hence
b 2"d¢ 3 for some integerdy. We have

3 b1 p2de 3gR™ 'd¢ 1g 3 2" 'de 3 pmod 2"qg
so that d¢, must be even. This implies thath, 3 pmod 2" !q as required.

Comment. The reason the number 3 which appears in both solutions is imertant, is that it is a
nontrivial xed point of the recurrence relation for by.
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N2. Let a and b be positive integers such that!b is a multiple of al bl. Prove that
3a¥ 2b 2.
(United Kingdom)

Solution 1. If aj b, we immediately get & ¥ 2b 2. In the casea b the required
inequality is equivalent toa ¥ 2, which can be checked easily singa;bq p1;1gdoes not
satisfy al Db | albd. We now assumea b and denotec b a. The required inequality
becomesa ¥ 2c 2.

Suppose, to the contrary, thataa 2c 1. De ne M % pa 1lga 29 @ cg Since
al p|albimpliesl M |aM,weobtainl M |al. Note that we must havec a; otherwise
1 M j al, which is impossible. We observe that! | M sinceM is a product ofc consecutive
integers. Thus gcgil M;clg 1, which implies

!
1 M %pc g 29 a: (2)

If am 2c, then 2—,' is a product ofa ca cintegers not exceedinga whereasM is a product of
c integers exceedin@. Therefore, 1 M j 2—,' which is a contradiction.

It remains to exclude the casea 2c 1. Sincea 1 2 1g we havec 1| M. Hence,
we can deduce fromY) that1 M |pc 2q® 39 a Nowpc 2qm 39 ais a product
ofa ¢ 1 cintegers not exceeding; thus it is smaller than 1 M. Again, we arrive at a

contradiction.

Comment 1. One may degjve a weaker version of ) and nish the problem as follows. After
assuminga® 2¢c 1, we have § @ ¢, so §!| M. Therefore,

Yl Y Al
> 1 > 2 a
X X\ PT
Observe that § 1 5 2 paris a product of § integers not exceedinga. This leads to a
contradiction when a is even since § 5@ cand M is a product of ¢ integers; exceedinga.
When a is odd, we can further deduce that1 M | &2 22 asince 1 &t a 1.

Now 23 25 ais a product of 2.1 o ¢ numbers not exceedinga, and we get a contradiction.
2 2 2

1 M

[NT1s)

Solution 2.  As in Solution 1, we may assume thah band letc b a. Suppose, to the
contrary, that am 2c 1. Froma! b | alb, we have

N 1pa lga 29 @m cq pa cd;

which implies that all prime factors ofN are at mosta c.

Let p be a prime factor ofN. If pa corp¥ a 1,thenpdividesoneofa 1,...,a ¢
which is impossible. Henca ¥ p¥ c¢ 1. Furthermore, we must have pj a c; otherwise,
a lw2c 20 2poa csop|N 1,againimpossible. Thus, we havp P 4:f,a, and
p>-pa cd since dj a c. Therefore,p? -N as well.

If ao ¢ 2, then the interval 2;%,a contains at most one integer and hence at most one
prime number, which has to bea. Sincep? -N, we must haveN p aor N 1, which is
absurd sinceN | a¥ 1. Thus, we havea¥ ¢ 3, and so""TCl ¥ ¢ 2. It follows that p lies
in the interval rc  2;as

Thus, every prime appearing in the prime factorization N lies in the intervalrc 2; as, and
its exponent is exactly 1. Sowe musthawd |pc 2qe 3q a. However,;,c 2qmg 39 ais
a product ofa ¢ 1= cnumbers not exceedin@, so it is less thanN. This is a contradiction.

Comment 2. The original problem statement also asks to determine whenhe equality 3a 2b 2
holds. It can be checked that the answer iga;bq p 2;2g p4; 59
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N3. Let m andn be positive integers such tham j n. Dene xx, pm kag{m kqfor k
1,2;:::;n 1. Prove that if all the numbersxy; X,;:::;X, 1 are integers, thenx;x, X, 1 1

(Austria)
Solution. Assume thatxi; X,;:::;X, 1 are integers. De ne the integers
m Kk m n
X 1 1 i O
A g n k n k'

fork 1,2;:::;n 1.

Let P XX X, 1 1. We need to prove thatP is divisible by an odd prime, or in
other words, that P is not a power of 2. To this end, we investigate the powers of 2 dividing
the numbersay.

Let 29 be the largest power of 2 dividingn n, and let Z be the largest power of 2 not
exceeding® 1. Then2h 1o 2! 1 andson 1z 2°. We conclude that 2 is one of the
numbersn 1;n 2;:::;2n 1, and that it is the only multiple of 2° appearing among these
numbers. Let” be such thatn ~  2°% Since ™= is an integer, we haved ¥ c. Therefore,
2dcl.a M while2 ¢ ta forallkPtl::;;n luztu

Computing modulo 2 ¢ 1, we get

P pa lg®m 19 @ :1 1g 1 pa 191" 1 a O pnod? ¢lg

Therefore, 2 ¢ 1 -P.
On the other hand, foranyk P t1;:::;n 1luztu wehave 3 ¢ 1| a. SoP ¥ g ¥ 2¢ ¢ 1,
and it follows that P is not a power of 2.

Comment. Instead of attempting to show that P is not a power of 2, one may try to nd an odd
factor of P (greater than 1) as follows:

From ay o P Z;0, we get that m n is divisible by n  1,n 2:::;2n 1, and thus
it is also divisible by their least common multiple L. Som n gL for some positive integerq;

hencexy q 5 1.

Then,sincen 182 n “wo2n 1a2¢! 1 wehave2|L,but2® ?-L. So-tis odd,
while nL—k is even fork . Computing modulo 2q yields

XiX2 Xp 1 1 pg 191" 1 g pmod 29q

Thus, Xx3X2  Xn 12 1 29gr g qe2r 1qgfor some integerr.
SincexiXa Xn 1 1¥ Xixo 1¥pg 1¢ 1 g we haver ¥ 1. This implies that
X1X2  Xp 1 1is divisible by an odd prime.
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N4. Suppose thatag;a;;::: and ky; by;::: are two sequences of positive integers satisfying
oy ¥ 2 and

a 1 gcdmn;bhg 1L b 1 lempanibhg 1
for all n ¥ 0. Prove that the sequenced,) is eventually periodic; in other words, there exist

integersN ¥ 0 andtj Osuchthata, ; a, foralln¥ N.
(France)

Solution 1. Lets, a, . Noticethatif a,|b,,thena, 1 a, 1,b, ;1 Ik 1and
Sn 1 Sn. So,a, increases by 1 andg,, does not change until the rst index is reached with
a, -Sp. Dene

W, mPZio:m¥anandm-sn( and w, minW,:

Claim 1. The sequencew,qis non-increasing.
Proof. If a, | b, thena, ; a, 1. Duetoa, |sn, we havea, RW,. Moreovers, ;1 Sp;
therefore, W,, 1 W, andw, 1 W,.

Otherwise, if a, - b,, then a, - s,, soa, PW, and thusw, a,. We show thata, PW, 1;
this impliesw,, ;@ a, w,. By the de nition of W, 1, we need thata, ¥ a, ;anda, -s, 1.
The rst relation holds because of gcpa,;b,g a,. For the second relation, observe that in
Sn 1 gcdm,;b,g Icmpa,;hb,q the second term is divisible bya,, but the rst term is not.
Soa, -S, 1; that completes the proof of the claim. I

Let w mnin w, and let N be an index withw  wy. Due to Claim 1, we havew, w for

alln¥ N.

Letg, gcdw;s,g As we have seen, starting from an arbitrary inder ¥ N, the sequence
an;a, 1;..:Increases by 1 until it reachesv, which is the rst value not dividing s,; then it
drops to gcgw;s,qg 1 ¢, 1.

Claim 2. The sequencex,qis constant forn ¥ N.
Proof. If a, | by, thens, 1 s, and henceg, ;1 @g,. Otherwise we havea, w,

gcdm,; bhg  gecdm,;sng  gcdow;s\gq  On;

W W
Sh 1 gcdmn;bhg lempa,;bg o, Bt On M; (1)

On On
W
w gcdow; hg  On: I

Sn

and g, 1 gcdw;s, 1 gcd w; g

n
Let g on. We have proved that the sequencpa,qeventually repeats the following cycle:

g 1pNg 2pPN::pPNwbPNg 1:

Solution 2. By Claim 1 in the rst solution, we have a, @ w, @ wp, so the sequencea,qis
bounded, and hence it has only nitely many values.

Let M Icmpayg; ap;:::q and consider the sequends moduloM . Let r, be the remainder
of b,, divided by M. For every indexn, sincea, | M | b, r,, we have gcga,;b,q gcdm,;rnqg
and therefore

a, 1 gcdmn;raq 1

Moreover,

rh 1 b1 lempag; g b,

.
gcdm,; by
a, an

% 1 —% 1 pmodM
gcdm,; rncrlt11 gcdpan; g " i a
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Hence, the pairpa,; r,quniquely determines the paima, 1;rn 16 Since there are nitely many
possible pairs, the sequence of paipa,;rn,qis eventually periodic; in particular, the sequence
pa,qis eventually periodic.

Comment. We show that there are only four possibilities forg and w (as de ned in Solution 1),
namely (

pv;gq P pi2; 1q p3; 1q p4; 2q pb; 1q )
This means that the sequencemr, g eventually repeats one of the following cycles:

Rg ;3 349 or 3459 (3)

divide sn; so the numberL Icmpy 1,9 2;:::;w 1galso dividess,. Moreover, g also dividesw.
Now choose anyn ¥ N such that a, w. By (1), we have

W W W
Sn 1 g %:] Sp 5

SincelL divides both s, and s, 1, it also divides the number T w?_g?

Suppose rstthat w ¥ 6, which yieldsg 1= ¥ 1o w 2 Thenpyv 2gw 1q|L|T, sowe
have eitherw? ¢>¥ 2w 1gwv 2gorg l1andw? ¢®> pw I1gw 2q Inthe former case we
getpyv  1gw 59 pg?® 1q =@ 0 which is false by our assumption. The latter equation rewries as
3w 3,sow 1, which is also impossible.

Now we are left with the cases whernw =& 5 and g | w. The casepw;gq p4;1q violates the

condition L | Wzg 9 all other such pairs are listed in (2).

In the table below, for each pair pw; gg we provide possible sequencg®,qand pb,g That shows
that the cycles shown in (3) are indeed possible.

w 2 g 1 a 2 by 22" 1

w 3 g 1 pax;ax 19 p23q ook 19 p6 3 26 3 1q

w 4 g 2 pax;ax 19 p3;4q oo 10 pl2 2 312 2 2q

W 5 g 1 pas;iii;am 30 P23,459 fha;iiiihw g p6 B¢ 41156 54 g
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N5. Determine all triples pa; b; @ of positive integers for whichab ¢, bc a, andca bare
powers of 2.

Explanation: A power of2 is an integer of the form2", wheren denotes some nonnegative
integer.
(Serbia)

Answer. There are sixteen such triples, namely; 2; 2q the three permutations off2; 2; 3q,
and the six permutations of each of2; 6; 11gand 3; 5; 7g

Solution 1. It can easily be veri ed that these sixteen triples are as required. dw let pa; b; @
be any triple with the desired property. If we would havea 1, then bothb candc bwere
powers of 2, which is impossible since their sum is zero; because ofragtny, this argument
showsa; b; c¥ 2.

Case 1. Amonga, b, and c there are at least two equal numbers.

Without loss of generality we may suppose thaa b. Thena? candapc 1qare powers
of 2. The latter tells us that actually aand ¢ 1 are powers of 2. So there are nonnegative
integers and witha 2 andc 2 1. Sincea®? ¢ 22 2 1is a power of 2 and
thus incongruent to 1 modulo 4, we must have © 1. Moreover, each of the terms2 2
and 2 3 canonly be a power of 2if 1. It follows that the triple pa;b; @is either @; 2; 2q
or @;2;3q

Case 2. The numbers, b, and c are distinct.
Due to symmetry we may suppose that

2c0a b c: (2)

We are to prove that the triple pa; b; @is either p2; 6; 11qor 3;5; 7 By our hypothesis, there
exist three nonnegative integers, , and such that

bc a 2 ; (2)
ac b 2; 3)
and ab ¢ 2: (4)
Evidently we have
i (5)

Depending on how large is, we divide the argument into two further cases.

Case 2.1. a 2.

We rst prove that 0. Assume for the sake of contradiction that | 0. Thencis even
by (4) and, similarly, b is even by (5) and (3). So the left-hand side of (2) is congruent to 2
modulo 4, which is only possible ibc 4. As this contradicts (1), we have thereby shown that
0,ie.,thatc 2b 1.
Now (3) yields 3 2 2. Duetobj 2 thisis only possible if ¥ 4. If 4, then we
getb 6andc 2 6 1 11, which is a solution. It remains to deal with the case ¥ 5.
Now (2) implies

92 O9yb 19 18 p3b 2qBb 1q 16 2@ ! 5q 16;

and by ¥ 5 the right-hand side is not divisible by 32. Thus © 4 and we get a contradiction
to (5).
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Case 2.2. a¥ 3.
Pick an integer# Pt 1; 1lusuchthatc # is not divisible by 4. Now

2 # 2 pbc a#’q #mra bg pb a#qu #q

is divisible by 2 and, consequentlyp a# is divisible by 2 . Onthe other hand, 2 ac bj
pa  1lc ¥ 2cimplies in view of (1) that a and b are smaller than 2 . All this is only possible
if# l1anda b 2 1 Now (3) yields

ac b 2m Iog; (6)

whence i a 3b apc 1q ¥ ah which in turn yieldsa 3.

So (6) simpliestoc b 2and (2)tellsusthathb 29 3 pb 1gfd 3qis a power
of 2. Consequently, the factor® 1 andb 3 are powers of 2 themselves. Since their di erence
is 4, this is only possible i 5 and thusc 7. Thereby the solution is complete.

Solution 2. As in the beginning of the rst solution, we observe thata; b;c¥ 2. Depending
on the parities ofa, b, and c we distinguish three cases.

Case 1. The numbers, b, and c are even.

Let 24, 28, and X be the largest powers of 2 dividing, b, and c respectively. We may assume
without loss of generality that 1@ A @ B o C. Now 2 is the highest power of 2 dividing

ac b,whenceac b 28 o b Similarly, we deducebc a 2" o a. Adding both estimates

we getpa boece 2 bg whencece 2. Soc 2andthusA B C  1; moreover, we
must have had equality throughout, i.e.a 2% 2andb 28 2. We have thereby found
the solution pa;b; @ p2;2; 29

Case 2. The numbers, b, and ¢ are odd.

If any two of these numbers are equal, say b thenac b apc 1ghas a nontrivial odd
divisor and cannot be a power of 2. Hencg b, and c are distinct. So we may assume without
loss of generality thata b c.

Let and denote the nonnegative integers for whichc a 2 andac b 2 hold.
Clearly, we have  , and thus 2 divides

a2 b2 abc agq bpac by ¥ a® pb agbh agq:

Sinceais odd, it is not possible that both factords aandb a are divisible by 4. Consequently,
one of them has to be a multiple of 2 *. Hence one of the numbers@ agand 2b agis
divisible by 2 and in either case we have

ac b 2 o2m b (7)

This in turn yields pp 1o ac b 4band thusa 3 (recall that a is odd and larger
than 1). Substituting this back into (7) we learnca b 2. But due to the parity b ¢ entails
that b 2o choldsaswell. Sowegaet b 2andfrombc a pb 1gp 3qgbeing a power
of 2 it follows thatb 5 andc 7.

Case 3. Amonga, b, and c both parities occur.

Without loss of generality, we suppose that is odd and thata @ b. We are to show that
[a; b; @is either @2; 2;3qor @; 6; 11q As at least one ofa and b is even, the expressiomab ¢
is odd; since it is also a power of 2, we obtain

ab ¢ 1: (8)

If a bthenc a®> 1,andfromac b apa® 2qbeing a power of 2 it follows that botha
and a®> 2 are powers of 2, whenca 2. This gives rise to the solution®; 2; 3g
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We may supposea b from now on. As usual, we let j denote the integers satisfying
2 bc a and 2 ac b: (9)
If 0 it would follow that ac b ab c¢ 1 andhencethato c¢ 1, which is absurd. So

and are positive and consequentiya and b are even. Substitutingc ab 1 into (9) we
obtain

2 a pa o (10)
and 2 a’b pa o (11)

The addition of both equation yields 2 2 pab 2g& bg Nowab 2 is even but not
divisible by 4, so the highest power of 2 dividing bis 2 . For this reason, the equations
(10) and (11) show that the highest powers of 2 dividing either of thnumbersal? and a?b is
likewise 2 . Thus there is an integer ¥ 1 together with odd integersA, B, and C such that
a 2A,b 2B,a b 22C,and 1 3.

Notice that A B 22 C ¥ 4C. Moreover, (11) entailsA?B. C 2. Thus 8
4A°B  4C ¥ 4AB A B ¥ A?BB 1g SinceA and B are odd with A B, this is only
possible ifA 1 andB 3. Finally, one may concludeC 1, l,a 2,b 6, and
c 11. We have thereby found the triple®; 6; 11g This completes the discussion of the third
case, and hence the solution.

Comment. In both solutions, there are many alternative ways to proceé in each of its cases. Here
we present a di erent treatment of the part\ a b' of Case 3 in Solution 2, assuming that (8) and (9)
have already been written down:

Put d gcdpa;bgand de ne the integerspandgby a dpandb dg notice that p g and
gcdm; g 1. Now (8) impliesc  d?pq 1 and thus we have

2 dofPp p g
and 2 dpd’p’q p oo (12)

Now 2 divides2 2 d®pgyg pgand, asp and q are easily seen to be coprime ta’p?q p q,
it follows that

pp’q p qqld’pm pa: (13)

In particular, we have d°p?q p qo d’pg pgie.,d?m?qg p qgep g Asp’q p gj O, this
may be weakened top’q p q@ p ¢ Hencep?qa 2g, which is only possible ifp 1.
Going back to (13), we get
g g 1q|d°pg da: (14)

Now 20d?q q 1q =@ d’pg  1gwould entail d?py 1g = 2py  1gand thusd 1. But this would
tellusthat a dp 1, which is absurd. This argument proves pd’q q 1qj d’pg  1gand in the
light of (14) it follows that d°qg q 1 d?pg 1gi.e.,q d® 1. Plugging this together with p 1
into (12) we infer 2 d®pd® 2g Henced and d®> 2 are powers of 2. Consequentlyd 2,q 3,
a 2,b 6,andc 11, as desired.
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N6. Let Z, , denote the set of positive integers. Consider a functioh: Z, o N Z, 5. For
any m;n PZ; o we write f"omq  fgdHnolbBRa: ::ad Suppose thatf has the following two

n
properties:

m

n
pg lif m;n PZ, o, then %

piq The setZ, o ztf ;ng|n PZ; quis nite.

Prove that the sequencd plq 1;fp2q 2;f@Bqg 3;:::is periodic.

(Singapore)
Solution. We split the solution into three steps. In the rst of them, we show lhat the function
f is injective and explain how this leads to a useful visualization éf. Then comes the second
step, in which most of the work happens: its goal is to show that fany n PZ, ( the sequence
n;f ;g f?mq::: is an arithmetic progression. Finally, in the third step we put everytng
together, thus solving the problem.

Step 1. We commence by checking thaf is injective. For this purpose, we consider any
m;k PZ, o with f pmg  f (kg By pq every positive integemn has the property that

k m f"amg m f"kq k
n n n

is a di erence of two integers and thus integral as well. But fon | k m| 1 this is only
possible itk m. Thereby, the injectivity of f is established.

n 1 into condition pqwe getf pmgj mforall mPZ, ,.
We contend that every positive integen may be expressed uniquely in the form  flpaq

existence can be proved by induction om in the following way. If n P ta;;:::;au, then
we may takej  0; otherwise there is som@! n with fnlg n to which the induction
hypothesis may be applied.

The result of the previous paragraph means that every positive iger appears exactly once
in the following in nite picture, henceforth referred to as \the Table":

a | fpauq| f2pauq| f °pauq
a | fpaq| fpaq| f*papq

a | fpaqg| fepaq] f°pacq
The Table

Step 2. Our next goal is to prove that each row of the Table is an arithmetic qpgression.
Assume contrariwise that the numbet of rows which are arithmetic progressions would satisfy
Oa t k. By permuting the rows if necessary we may suppose that preciseéhe rst t rows

is \not too sparse” in an asymptotic sense, and then to prove thatuch a row has to be an
arithmetic progression as well.

Let us write T lcmpTy; To;:::; Tigand A maxtag;ap;:::;auiftj 0;andT 1 and
A O0ift 0. Foreveryintegern ¥ A, theinterval , r n 1;,n Tscontains exactlyT{T,
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elements of thei™ row (1 @ i & t). Therefore, the number of elements from the lagk tq
rows of the Table contained in ,, does not depend om ¥ A. It is not possible that none
of these intervals , contains an element from thek t last rows, because in nitely many
numbers appear in these rows. It follows that for each ¥ A the interval |, contains at least
one member from these rows.

This yields that for every positive integerd, the interval A 1;A pd 1qf& tdlscontains
atleastpd 1qk tgelements from the lask t rows; therefore, there exists an index with
t 1wz x o k, possibly depending ord, such that our interval contains at leastd 1 elements
from the x™ row. In this situation we have

fimqga A pd 1gk tqdT:

Finally, since there are nitely many possibilities forx, there exists an indexx ¥ t 1 such
that the set

X dPZ, fi%mqeA pd 1gk th(
is in nite. Thereby we have found the \dense row" promised above.

By assumptionpq for everyd P X the number

fipaq  a
d
is a positive integer not exceeding

A pd 1gk tqr o Ad 2dgk tgr

d d

This leaves us with nitely many choices for 4, which means that there exists a numbeiy
such that the set (
Y dPX 4 Ty

is in nite. Notice that we have f%m,q a, d T foralldPY.

A 2k tqr:

Now we are prepared to prove that the numbers in thg" row form an arithmetic progres-
sion, thus coming to a contradiction with our assumption. Let us x ay positive integerj .
Since the sety is in nite, we can choose a numbey PY such thaty j i flpaq pax jT«q.
Notice that both numbers

f¥pyq flpayg Y7 flpag  flpag and fYpacg pac jTxq py jdqlx

are divisible byy j. Thus, the di erence between these numbers is also divisible lgy j.
Since the absolute value of this di erence is less than j, it has to vanish, so we gef’ pa,q
a, | Ty

Hence, it is indeed true that all rows of the Table are arithmetic pragssions.

Step 3.Keeping the above notation in force, we denote the step of th® row of the table by T;.
Now we claim that we havefpng n fpn Tq pn Tqforall n PZ, o, where

T lemply;:::; TkQ:
To see this, let anyn P Z, , be given and denote the index of the row in which it appears in
the Table by i. Then we havefing n j T, forallj PZ, o, and thus indeed

f 1 T{T;

fm Tq fmg mg fmg pn T Tg pn Tq T:

This concludes the solution.
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Comment 1. There are some alternative ways to complete the second partree the index x
corresponding to a \dense row" is found. For instance, one mashow that for some integerT, the set
: - - (
Y jPZio f/ 'myq g Tx

is in nite, and then one may conclude with a similar divisibi lity argument.

Comment 2. It may be checked that, conversely, any way to Il out the Tabl e with nitely many
arithmetic progressions so that each positive integer appars exactly once, gives rise to a functiorf
satisfying the two conditions mentioned in the problem. For example, we may arrange the positive
integers as follows:

24| 6| 8|10
13| 17
3|7(111]15|19

=
(&)
©

This corresponds to the function

#
n 2 ifniseven;

f
ma n 4 ifnisodd

As this example shows, it is not true that the function n bPRf png n has to be constant.
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N7. Let Z, o denote the set of positive integers. For any positive integds, a function
f:Z 0N Z ,is calledk-goodif gcd fpmg n;fmng m o k forallm n. Find all k such
that there exists ak-good function.

(Canada)

Answer. k¥ 2.

Solution 1. For any functionf : Z, o N Z, o, let Gspm;ng gcd fpng n;fmg m . Note
that a k-good function is alsgk 1ggood for any positive integeik. Hence, it su ces to show
that there does not exist a 1-good function and that there exists 2-good function.

We rst show that there is no 1-good function. Suppose that ther exists a functionf such
that Gspm;ng 1 forallm n. Now, if there are two distinct even numbersn and n such
that f pmg and f png are both even, then 2| G; pm;ng a contradiction. A similar argument
holds if there are two distinct odd numbersam and n such that f png and f png are both odd.
Hence we can choose an evem and an oddn such that f pmqis odd andf pnqis even. This
also implies that 2| G pm; ng a contradiction.

We now construct a 2-good function. Denefpng 2991 n 1, whereg is de ned
recursively bygplg 1andgm 1q p299 iq.
For any positive integersm j n, set

A fpmg n 291 m n 1 B fpng m 299! n m 1

We need to show that gcgA;Bq o 2. First, note that A B 29Pma 1 2ma 1 2 s not
divisible by 4, so that 4- gcdoA; Bg Now we suppose that there is an odd primp for which
p | gcdPA; B gand derive a contradiction.

We rst claimthat 2 9™ 19 1 ¥ B This is a rather weak bound; one way to prove it is as fol-
lows. Observe thatggk 1q i gkgand hence 2 19 1y 29%a 11 for every positive integei.
By repeatedly applying this inequality, we obtain 2™ 14 1y 20ma1 o m 1g n B.

Now, sincep | B, we havep 1 B o 20 141 gsothatp 1| 9 91 gmng
Hence 29 1 pmod pg which yieldsA B 299 1 gmod pg However, sincep | A B,
this implies that p 2, a contradiction.

Solution 2.  We provide an alternative construction of a 2-good functiofi.

Let P be the set consisting of 4 and all odd primes. For evep/P P, we say that a number
aP1t0;1:::;p 1luis p-usefulif a a pmod pg Note that a residue modulop which is
neither 0 nor 2 isp-useful (the latter is needed only whep  4).

We will construct f recursively; in some steps, we will also de ne p-useful numbera,.
After the m™ step, the construction will satisfy the following conditions:

(i) The values off pnghave already been de ned for alh @ m, and p-useful numbersa, have
already been de ned for allpe m 2,

(i) f nemandpe m 2,thenfmg n a, pnod pg
(i) ged fpng no;fpg ng o 2forallng n,a m.
If these conditions are satis ed, therf will be a 2-good function.

Step 1. Setfplqg 1andaz 1. Clearly, all the conditions are satis ed.

Stepm, for m ¥ 2. We need to determingd pmgand, if m 2 PP, the numbera,, ».

Dening fpmg Let X, t pPP:p| fpng m forsomen mu We will determine
f png mod p for all p P X,, and then choosd pmqgusing the Chinese Remainder Theorem.
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Take anyp P Xn,. If pa m 1, then we de nef pmq a, m pmod pg Otherwise, if
p¥ m 2, then we denefpmg O pmod pg

Dening an .. Nowletp m 2 and suppose thatp P P. We choosea, to be a residue
modulo p that is not congruent to 0, 2, orf nq n foranyna m. Sincefplg 1 2, there
are at mostm 1 presidues to avoid, so we can always choose a remaining residue.

We rst check that (i) is satis ed. We only need to check itifp m 2orn m. Inthe
former case, we havépng n &, pmod pqby construction. In the latter case, ifn  m and
pe m 1, then we havefpmg m a, a, pmod pg where we make use of the fact that
ay is p-useful.

Now we check that {ii) holds. Suppose, to the contrary, thapp| gcd fmng m;fpmg n
forsomen m. ThenpPX,,andp|fpmg n. Ifp¥ m 2,then0 fpmg n n pmod pg
which is impossible sincea m p.

Otherwise, ifpa m 1, then

0 fpng n fpng m fpng n fpmg m fmg n & pmodpg
This implies that f png n &, pmod pg a contradiction with (ii).

Comment 1. For any p PP, we may also de nea, at step m for an arbitrary m a p 2. The
construction will work as long as we de ne a nite number of a, at each step.

Comment 2. When attempting to construct a 2-good function f recursively, the following way
seems natural. Start with setting f plg 1. Next, for each integerm j 1, introduce the set X, like
in Solution 2 and de ne f pmg so as to satisfy

fpmg fpn pg pnod pq forall pPXy, with p m; and
fpmg O pmodpq forall pPXy with p¥ m.

This construction might seem to work. Indeed, consider a xal p P P, and suppose thatp
divides gcdfpng m;fpng n for somen m. Choose suchm and n so that maxpm;nq is
minimal. Then pPX,. We can check thatp = m, so that the construction implies that p di-
vides gcdfpng pm pgfpm pg n . Since mayn;m pg maxpm;ng this almost leads to a
contradiction|the only trouble is the possibility that n m p. However, this aw may happen to
be not so easy to x.

We will present one possible way to repair this argument in the next comment.

Comment 3. There are many recursive constructions for a 2-good functio f . Here we sketch one
general approach which may be speci ed in di erent ways. For onvenience, we denote by, the set
of residues modulop; all operations on elements ofZ,, are also performed modulop.

The general structure is the same as in Solution 2, i.e. usinthe Chinese Remainder Theorem to
successively determind pmg But instead of designating a common \safe" residuea, for future steps,
we act as follows.

For every p PP, in some step of the process we de ng subsetsBj'% B} ::;BPY € Z,. The
meaning of these sets is that

f pmg m should be congruent to some element ingiq wheneverm i pmod pgfori PZ,. (1)

Moreover, in every such subset we specify aafe elementtﬁq P ng. The meaning now is that in
future steps, it is safe to setf pmg m tﬁq pmod pgwheneverm i pmod pg In view of (1), this
safety will follow from the condition that p - gcd bgq pj igcd pj iq forallj P Zp and all
dap ng. In turn, this condition can be rewritten as

BBYRBI%  where j i Y pmod pg 2)
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The construction in Solution 2 is equivalent to setting bgq ap and ng Zp z tapu for all i.
However, there are di erent, more technical speci cations d our approach.

One may view the anomplete) con_structiond'n Comment 2 as dening ng and qu atstepp 1
by setting B 4 t ouand BFY BBY t fpq i modpuforeveryi 1;2::i:p 1.
However, this construction violates (2) as soon as some nunap of the form f gq i is divisible by
somepwith i 2@ pPP, since then B HIPBLY

Here is_ one possible way to repair this constructio(n. For allp PP, we de ne the sets g’q and(the
elementskf @ at stepp  2qas follows. SetB5 " t 2uandBf 9 BT M bp
t 1u Next, foralli 2;:::;p 2,dene ng t i;f pg i mod puand tﬁq i. One may see that
these de nitions agree with both (1) and (2).
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+ .
N8. For every positive integern with prime factorization n :‘ P, dene

fmg $

i:pij 10100

That is, f pngis the number of prime factors oh greater than 13°, counted with multiplicity.
Find all strictly increasing functionsf : Z N Z such that

f fpag fpg e fpa g for all integersa and bwith aj b 1)
(Brazil)

Answer. fxq ax b, wherebis an arbitrary integer, anda is an arbitrary positive integer
with f pag O.

Solution. A straightforward check shows that all the functions listed in the aswer satisfy the
problem condition. It remains to show the converse.

Assume thatf is a function satisfying the problem condition. Notice that the fundbn
gxq fpxq fpgalso satis es this condition. Replacing by g, we assume from now on that
fpog O; thenfpng i O for any positive integern. Thus, we aim to prove that there exists a
positive integera with f ppg 0 such thatf pnqg an foralln PZ.

We start by introducing some notation. SetN 10'°. We say that a primep is large
if pi N, and p is small otherwise; letS be the set of all small primes. Next, we say that
a positive integer islarge or small if all its prime factors are such (thus, the number 1 is the
unique number which is both large and small). For a positive integéds, we denote the greatest
large divisor of k and the greatest small divisor ok by Lpkqg and Sgkg respectively; thus,
k  LkaSpkq

We split the proof into three steps.
Step 1. We prove that for every largek, we havek | fppqg fpg & k| a b In other
words,L fpaq fpog Lpa bgfor all integersa andbwith aj b

We use induction onk. The base cas& 1 is trivial. For the induction step, assume that
ko is a large number, and that the statement holds for all large numbgk with k  ko.
Claim 1. For any integersx andy with 0 x 'y ko, the number ko does not divide
fxag fpa
Proof. Assume, to the contrary, thatky | fpxq fpyg Let™ Lpx ygthen © x y Ko

By the induction hypothesis, ™ | fpxq fpyg and thus lcmko; 'q |fpxq f pyg Notice that
lcmKo; "qis large, and lcniko; q ¥ ko i . But then

f fxg fpyg ¥f lempko;'q i fpg fx  yg

which is impossible. |
Now we complete the induction step. By Claim 1, for every integex each of the sequences

fragfp 1g:::;;fpa ko 1g and fpa 1gfpa 2g:::;fpa  koq

forms a complete residue system moduky. This yieldsfpag fpa koq pnod kg Thus,
fpag fpog pnod kggwhenevera b pmod kog

Finally, if a b pmod koq then there exists an integerb' such that bt b pmod koq and
la by ko Thenfpoyg fpblg fpag pnodkeg The induction step is proved.

Step 2. We prove that for some small integea there exist in nitely many integersn such that
fpng an. In other words, f is linear on some in nite set.
We start with the following general statement.
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Claim 2. There exists a constantc such that f pgq ct for every positive integert | N.

Proof. Let d be the product of all small primes, and let be a positive integer such that
2 | fpNg Then, for everyp P S the numbersf f0g f plg :::;f N g are distinct modulop .
SetP d andc P fpNg

Choose any integet | N. Due to the choice of , for everyp P S there exists at most one
nonnegative integen @ N with p | fpgq fpg Since|lS| N, we can choose a nonnegative
integerj @ N such thatp -fpg fpgqforall pPS. Therefore,S fpgg fgq P.

On the other hand, Step 1 shows that fpqg fggq Lpg jgat j. SinceOes j o N,
this yields

fpg fpqg L fpg fgg Sfpg fgg fpNg pt joPe P fpNgt cti |

Now let T be the set of large primes. For every PT, Step 1 impliesL fpgq t, so the
ratio f pq{t is an integer. Now Claim 2 leaves us with only nitely many choices for thistio,
which means that there exists an in nite subsefT!, T and a positive integera such that
foq atforallt PTY as required.

SinceLpq L fpg Lpad.pqforallt PTL we getLpag 1, so the numbera is small.

Step 3. We show thatf xq ax for all x PZ.

Let R xPZ:x 1 pnodN!q denote the residue class ofmoduloN!.

Claim 3. Assume that for some, there are in nitely many n PR, such thatf png an. Then
fpxqg axforall x PR, ;.

Proof. Choose anyx P R; ;. By our assumption, we can selead P R, such thatfpng an
and|n x|ij fmxq ax. Sincen x r pr 1q 1 pmod N !g the number|n x| is
large. Therefore, by Step 1 we havepxq fmg an ax pmodn xg son x|fpxqg ax.
Due to the choice ofn, this yields f pxq ax. I

To complete Step 3, notice that the seT found in Step 2 contains in nitely many elements
of some residue clasR;. Applying Claim 3, we successively obtain thaf pxq  ax for all
XPR, ;R 2;::7:Ry nv Rj. This nishes the solution.

Comment 1.  As the proposer also mentions, one may also consider the véos of the problem where
the condition (1) is replaced by the condition that L fpaq fpbg Lpa bgfor all integers a and b
with aj b. This allows to remove of Step 1 from the solution.

Comment 2.  Step 2 is the main step of the solution. We sketch several di eent approaches allowing
to perform this step using statements which are weaker than Gim 2.

Approach 1. Let us again denote the product of all small primes byd. We focus on the values pd' g
i ¥ 0. Inview of Step 1, we havelL. fpdq fpdg Lpd dq d * 1forallij k¥ 0.

Acting similarly to the beginning of the proof of Claim 2, one may choose a number ¥ 0 such
that the residues of the numbersf pd'q i 0;1;:::;N, are distinct modulo p for eachp PS. Then,
for everyi i N, there exists an exponentk kpgga N suchthatS fpdg fplkg P d.

Since there are only nitely many options for kpg as well as for the corresponding numbers
S fpdq fpd¥g, there exists an in nite set | of exponentsi j N such that k@ q attains the same
value ko for all i P, and such that, moreover,S fpdq fpdoq attains the same valuesy for all
i P1. Therefore, for all suchi we have

fpdg fpdog L fpdg fpdoq Sfpdg fpdog fpog d % 1

which means thatf is linear on the in nite set t'oli 1i Plu (although with rational coe cients).
Finally, one may implement the relation f pd'q f plg pnod d* 1qin order to establish that in
fact f pd'g{d' is a (small and xed) integer for all i P1I.
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Approach 2. Alternatively, one may start with the following lemma.
Lemma. There exists a positive constantc such that

BN BN
L fkq fpg L fkg fpqg ¥ cfpkg

i1 i1

2N

forall kj 3N.

+
Proof. Let k be an integer withk j 3N. Set N fpkq fdq.
Notice that for every prime p P S, at most one of the numbers in the set

H f pkq fp’q:loiosN(

is divisible by a power of p which is greater than f 3N g we say that such elements oH are bad
Now, for each elementh P H which is not bad we haveSphq & f BN d", while the bad elements do
not exceedf (kg Moreover, there are less tharN bad elements inH. Therefore,

1

Sp q sphao feNg ™ frkg:
hPH

This easily yields the lemma statement in view of the fact tha Lp oSp g ¥  fKq N for some
absolute constant . I

As a corollary of the lemma, one may get a weaker version of Cia 2 stating that there exists a
positive constant C such that f pkq @ Ck*2 for all k j 3N. Indeed, from Step 1 we have

8N BN
2N |

KNy Lk g L fpkg fag ¥ cfpkq” ;
i1 i1

sof pkq o ¢ HP2NQ3{2,

To complete Step 2 now, seta fplg Due to the estimates above, we may choose a positive
integer ng such that fpng an %Zlq for all n ¥ nq.

Takeanyn ¥ ngwith n 2 pmodN!q ThenL fpng fpg Lmg n{2andL fmqg fplg
Lepn 1g n 1;these relations yieldfpng fp0g O an pmodn{2gandfmg fplg a an
pmod n  1g respectively. Thus, &21“ fng an, which shows that f mq an in view of the
estimate above.

Comment 3. In order to perform Step 3, it su ces to establish the equality f png  an for any
in nite set of values of n. However, if this set has some good structure, then one may d easier ways
to complete this step.

For instance, after showing, as in Approach 2, thatf png an for all n ¥ ngwith n 2 pmod N g,
one may proceed as follows. Pick an arbitrary integeix and take any large primep which is greater
than |f pxq ax|. By the Chinese Remainder Theorem, there exists a positiventeger n j maxpx; nogq
suchthatn 2 pmod N!gandn x pmod pg By Step 1, we havef xqg fpmg an ax pmod pg
Due to the choice ofp, this is possible only iff pxq ax.
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